001
002//
003// This file is auto-generated. Please don't modify it!
004//
005package org.opencv.ml;
006
007import org.opencv.core.Mat;
008import org.opencv.core.TermCriteria;
009
010// C++: class LogisticRegression
011//javadoc: LogisticRegression
012public class LogisticRegression extends StatModel {
013
014    protected LogisticRegression(long addr) { super(addr); }
015
016
017    public static final int
018            REG_DISABLE = -1,
019            REG_L1 = 0,
020            REG_L2 = 1,
021            BATCH = 0,
022            MINI_BATCH = 1;
023
024
025    //
026    // C++:  Mat get_learnt_thetas()
027    //
028
029    //javadoc: LogisticRegression::get_learnt_thetas()
030    public  Mat get_learnt_thetas()
031    {
032        
033        Mat retVal = new Mat(get_learnt_thetas_0(nativeObj));
034        
035        return retVal;
036    }
037
038
039    //
040    // C++: static Ptr_LogisticRegression create()
041    //
042
043    //javadoc: LogisticRegression::create()
044    public static LogisticRegression create()
045    {
046        
047        LogisticRegression retVal = new LogisticRegression(create_0());
048        
049        return retVal;
050    }
051
052
053    //
054    // C++:  TermCriteria getTermCriteria()
055    //
056
057    //javadoc: LogisticRegression::getTermCriteria()
058    public  TermCriteria getTermCriteria()
059    {
060        
061        TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj));
062        
063        return retVal;
064    }
065
066
067    //
068    // C++:  double getLearningRate()
069    //
070
071    //javadoc: LogisticRegression::getLearningRate()
072    public  double getLearningRate()
073    {
074        
075        double retVal = getLearningRate_0(nativeObj);
076        
077        return retVal;
078    }
079
080
081    //
082    // C++:  float predict(Mat samples, Mat& results = Mat(), int flags = 0)
083    //
084
085    //javadoc: LogisticRegression::predict(samples, results, flags)
086    public  float predict(Mat samples, Mat results, int flags)
087    {
088        
089        float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags);
090        
091        return retVal;
092    }
093
094    //javadoc: LogisticRegression::predict(samples)
095    public  float predict(Mat samples)
096    {
097        
098        float retVal = predict_1(nativeObj, samples.nativeObj);
099        
100        return retVal;
101    }
102
103
104    //
105    // C++:  int getIterations()
106    //
107
108    //javadoc: LogisticRegression::getIterations()
109    public  int getIterations()
110    {
111        
112        int retVal = getIterations_0(nativeObj);
113        
114        return retVal;
115    }
116
117
118    //
119    // C++:  int getMiniBatchSize()
120    //
121
122    //javadoc: LogisticRegression::getMiniBatchSize()
123    public  int getMiniBatchSize()
124    {
125        
126        int retVal = getMiniBatchSize_0(nativeObj);
127        
128        return retVal;
129    }
130
131
132    //
133    // C++:  int getRegularization()
134    //
135
136    //javadoc: LogisticRegression::getRegularization()
137    public  int getRegularization()
138    {
139        
140        int retVal = getRegularization_0(nativeObj);
141        
142        return retVal;
143    }
144
145
146    //
147    // C++:  int getTrainMethod()
148    //
149
150    //javadoc: LogisticRegression::getTrainMethod()
151    public  int getTrainMethod()
152    {
153        
154        int retVal = getTrainMethod_0(nativeObj);
155        
156        return retVal;
157    }
158
159
160    //
161    // C++:  void setIterations(int val)
162    //
163
164    //javadoc: LogisticRegression::setIterations(val)
165    public  void setIterations(int val)
166    {
167        
168        setIterations_0(nativeObj, val);
169        
170        return;
171    }
172
173
174    //
175    // C++:  void setLearningRate(double val)
176    //
177
178    //javadoc: LogisticRegression::setLearningRate(val)
179    public  void setLearningRate(double val)
180    {
181        
182        setLearningRate_0(nativeObj, val);
183        
184        return;
185    }
186
187
188    //
189    // C++:  void setMiniBatchSize(int val)
190    //
191
192    //javadoc: LogisticRegression::setMiniBatchSize(val)
193    public  void setMiniBatchSize(int val)
194    {
195        
196        setMiniBatchSize_0(nativeObj, val);
197        
198        return;
199    }
200
201
202    //
203    // C++:  void setRegularization(int val)
204    //
205
206    //javadoc: LogisticRegression::setRegularization(val)
207    public  void setRegularization(int val)
208    {
209        
210        setRegularization_0(nativeObj, val);
211        
212        return;
213    }
214
215
216    //
217    // C++:  void setTermCriteria(TermCriteria val)
218    //
219
220    //javadoc: LogisticRegression::setTermCriteria(val)
221    public  void setTermCriteria(TermCriteria val)
222    {
223        
224        setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon);
225        
226        return;
227    }
228
229
230    //
231    // C++:  void setTrainMethod(int val)
232    //
233
234    //javadoc: LogisticRegression::setTrainMethod(val)
235    public  void setTrainMethod(int val)
236    {
237        
238        setTrainMethod_0(nativeObj, val);
239        
240        return;
241    }
242
243
244    @Override
245    protected void finalize() throws Throwable {
246        delete(nativeObj);
247    }
248
249
250
251    // C++:  Mat get_learnt_thetas()
252    private static native long get_learnt_thetas_0(long nativeObj);
253
254    // C++: static Ptr_LogisticRegression create()
255    private static native long create_0();
256
257    // C++:  TermCriteria getTermCriteria()
258    private static native double[] getTermCriteria_0(long nativeObj);
259
260    // C++:  double getLearningRate()
261    private static native double getLearningRate_0(long nativeObj);
262
263    // C++:  float predict(Mat samples, Mat& results = Mat(), int flags = 0)
264    private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags);
265    private static native float predict_1(long nativeObj, long samples_nativeObj);
266
267    // C++:  int getIterations()
268    private static native int getIterations_0(long nativeObj);
269
270    // C++:  int getMiniBatchSize()
271    private static native int getMiniBatchSize_0(long nativeObj);
272
273    // C++:  int getRegularization()
274    private static native int getRegularization_0(long nativeObj);
275
276    // C++:  int getTrainMethod()
277    private static native int getTrainMethod_0(long nativeObj);
278
279    // C++:  void setIterations(int val)
280    private static native void setIterations_0(long nativeObj, int val);
281
282    // C++:  void setLearningRate(double val)
283    private static native void setLearningRate_0(long nativeObj, double val);
284
285    // C++:  void setMiniBatchSize(int val)
286    private static native void setMiniBatchSize_0(long nativeObj, int val);
287
288    // C++:  void setRegularization(int val)
289    private static native void setRegularization_0(long nativeObj, int val);
290
291    // C++:  void setTermCriteria(TermCriteria val)
292    private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon);
293
294    // C++:  void setTrainMethod(int val)
295    private static native void setTrainMethod_0(long nativeObj, int val);
296
297    // native support for java finalize()
298    private static native void delete(long nativeObj);
299
300}