001 002// 003// This file is auto-generated. Please don't modify it! 004// 005package org.opencv.ml; 006 007import org.opencv.core.Mat; 008import org.opencv.core.TermCriteria; 009 010// C++: class LogisticRegression 011//javadoc: LogisticRegression 012public class LogisticRegression extends StatModel { 013 014 protected LogisticRegression(long addr) { super(addr); } 015 016 017 public static final int 018 REG_DISABLE = -1, 019 REG_L1 = 0, 020 REG_L2 = 1, 021 BATCH = 0, 022 MINI_BATCH = 1; 023 024 025 // 026 // C++: Mat get_learnt_thetas() 027 // 028 029 //javadoc: LogisticRegression::get_learnt_thetas() 030 public Mat get_learnt_thetas() 031 { 032 033 Mat retVal = new Mat(get_learnt_thetas_0(nativeObj)); 034 035 return retVal; 036 } 037 038 039 // 040 // C++: static Ptr_LogisticRegression create() 041 // 042 043 //javadoc: LogisticRegression::create() 044 public static LogisticRegression create() 045 { 046 047 LogisticRegression retVal = new LogisticRegression(create_0()); 048 049 return retVal; 050 } 051 052 053 // 054 // C++: TermCriteria getTermCriteria() 055 // 056 057 //javadoc: LogisticRegression::getTermCriteria() 058 public TermCriteria getTermCriteria() 059 { 060 061 TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); 062 063 return retVal; 064 } 065 066 067 // 068 // C++: double getLearningRate() 069 // 070 071 //javadoc: LogisticRegression::getLearningRate() 072 public double getLearningRate() 073 { 074 075 double retVal = getLearningRate_0(nativeObj); 076 077 return retVal; 078 } 079 080 081 // 082 // C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0) 083 // 084 085 //javadoc: LogisticRegression::predict(samples, results, flags) 086 public float predict(Mat samples, Mat results, int flags) 087 { 088 089 float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags); 090 091 return retVal; 092 } 093 094 //javadoc: LogisticRegression::predict(samples) 095 public float predict(Mat samples) 096 { 097 098 float retVal = predict_1(nativeObj, samples.nativeObj); 099 100 return retVal; 101 } 102 103 104 // 105 // C++: int getIterations() 106 // 107 108 //javadoc: LogisticRegression::getIterations() 109 public int getIterations() 110 { 111 112 int retVal = getIterations_0(nativeObj); 113 114 return retVal; 115 } 116 117 118 // 119 // C++: int getMiniBatchSize() 120 // 121 122 //javadoc: LogisticRegression::getMiniBatchSize() 123 public int getMiniBatchSize() 124 { 125 126 int retVal = getMiniBatchSize_0(nativeObj); 127 128 return retVal; 129 } 130 131 132 // 133 // C++: int getRegularization() 134 // 135 136 //javadoc: LogisticRegression::getRegularization() 137 public int getRegularization() 138 { 139 140 int retVal = getRegularization_0(nativeObj); 141 142 return retVal; 143 } 144 145 146 // 147 // C++: int getTrainMethod() 148 // 149 150 //javadoc: LogisticRegression::getTrainMethod() 151 public int getTrainMethod() 152 { 153 154 int retVal = getTrainMethod_0(nativeObj); 155 156 return retVal; 157 } 158 159 160 // 161 // C++: void setIterations(int val) 162 // 163 164 //javadoc: LogisticRegression::setIterations(val) 165 public void setIterations(int val) 166 { 167 168 setIterations_0(nativeObj, val); 169 170 return; 171 } 172 173 174 // 175 // C++: void setLearningRate(double val) 176 // 177 178 //javadoc: LogisticRegression::setLearningRate(val) 179 public void setLearningRate(double val) 180 { 181 182 setLearningRate_0(nativeObj, val); 183 184 return; 185 } 186 187 188 // 189 // C++: void setMiniBatchSize(int val) 190 // 191 192 //javadoc: LogisticRegression::setMiniBatchSize(val) 193 public void setMiniBatchSize(int val) 194 { 195 196 setMiniBatchSize_0(nativeObj, val); 197 198 return; 199 } 200 201 202 // 203 // C++: void setRegularization(int val) 204 // 205 206 //javadoc: LogisticRegression::setRegularization(val) 207 public void setRegularization(int val) 208 { 209 210 setRegularization_0(nativeObj, val); 211 212 return; 213 } 214 215 216 // 217 // C++: void setTermCriteria(TermCriteria val) 218 // 219 220 //javadoc: LogisticRegression::setTermCriteria(val) 221 public void setTermCriteria(TermCriteria val) 222 { 223 224 setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); 225 226 return; 227 } 228 229 230 // 231 // C++: void setTrainMethod(int val) 232 // 233 234 //javadoc: LogisticRegression::setTrainMethod(val) 235 public void setTrainMethod(int val) 236 { 237 238 setTrainMethod_0(nativeObj, val); 239 240 return; 241 } 242 243 244 @Override 245 protected void finalize() throws Throwable { 246 delete(nativeObj); 247 } 248 249 250 251 // C++: Mat get_learnt_thetas() 252 private static native long get_learnt_thetas_0(long nativeObj); 253 254 // C++: static Ptr_LogisticRegression create() 255 private static native long create_0(); 256 257 // C++: TermCriteria getTermCriteria() 258 private static native double[] getTermCriteria_0(long nativeObj); 259 260 // C++: double getLearningRate() 261 private static native double getLearningRate_0(long nativeObj); 262 263 // C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0) 264 private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags); 265 private static native float predict_1(long nativeObj, long samples_nativeObj); 266 267 // C++: int getIterations() 268 private static native int getIterations_0(long nativeObj); 269 270 // C++: int getMiniBatchSize() 271 private static native int getMiniBatchSize_0(long nativeObj); 272 273 // C++: int getRegularization() 274 private static native int getRegularization_0(long nativeObj); 275 276 // C++: int getTrainMethod() 277 private static native int getTrainMethod_0(long nativeObj); 278 279 // C++: void setIterations(int val) 280 private static native void setIterations_0(long nativeObj, int val); 281 282 // C++: void setLearningRate(double val) 283 private static native void setLearningRate_0(long nativeObj, double val); 284 285 // C++: void setMiniBatchSize(int val) 286 private static native void setMiniBatchSize_0(long nativeObj, int val); 287 288 // C++: void setRegularization(int val) 289 private static native void setRegularization_0(long nativeObj, int val); 290 291 // C++: void setTermCriteria(TermCriteria val) 292 private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); 293 294 // C++: void setTrainMethod(int val) 295 private static native void setTrainMethod_0(long nativeObj, int val); 296 297 // native support for java finalize() 298 private static native void delete(long nativeObj); 299 300}