001 002// 003// This file is auto-generated. Please don't modify it! 004// 005package org.opencv.ml; 006 007import org.opencv.core.Algorithm; 008import org.opencv.core.Mat; 009 010// C++: class StatModel 011//javadoc: StatModel 012public class StatModel extends Algorithm { 013 014 protected StatModel(long addr) { super(addr); } 015 016 017 public static final int 018 UPDATE_MODEL = 1, 019 RAW_OUTPUT = 1, 020 COMPRESSED_INPUT = 2, 021 PREPROCESSED_INPUT = 4; 022 023 024 // 025 // C++: bool empty() 026 // 027 028 //javadoc: StatModel::empty() 029 public boolean empty() 030 { 031 032 boolean retVal = empty_0(nativeObj); 033 034 return retVal; 035 } 036 037 038 // 039 // C++: bool isClassifier() 040 // 041 042 //javadoc: StatModel::isClassifier() 043 public boolean isClassifier() 044 { 045 046 boolean retVal = isClassifier_0(nativeObj); 047 048 return retVal; 049 } 050 051 052 // 053 // C++: bool isTrained() 054 // 055 056 //javadoc: StatModel::isTrained() 057 public boolean isTrained() 058 { 059 060 boolean retVal = isTrained_0(nativeObj); 061 062 return retVal; 063 } 064 065 066 // 067 // C++: bool train(Mat samples, int layout, Mat responses) 068 // 069 070 //javadoc: StatModel::train(samples, layout, responses) 071 public boolean train(Mat samples, int layout, Mat responses) 072 { 073 074 boolean retVal = train_0(nativeObj, samples.nativeObj, layout, responses.nativeObj); 075 076 return retVal; 077 } 078 079 080 // 081 // C++: bool train(Ptr_TrainData trainData, int flags = 0) 082 // 083 084 // Unknown type 'Ptr_TrainData' (I), skipping the function 085 086 087 // 088 // C++: float calcError(Ptr_TrainData data, bool test, Mat& resp) 089 // 090 091 // Unknown type 'Ptr_TrainData' (I), skipping the function 092 093 094 // 095 // C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0) 096 // 097 098 //javadoc: StatModel::predict(samples, results, flags) 099 public float predict(Mat samples, Mat results, int flags) 100 { 101 102 float retVal = predict_0(nativeObj, samples.nativeObj, results.nativeObj, flags); 103 104 return retVal; 105 } 106 107 //javadoc: StatModel::predict(samples) 108 public float predict(Mat samples) 109 { 110 111 float retVal = predict_1(nativeObj, samples.nativeObj); 112 113 return retVal; 114 } 115 116 117 // 118 // C++: int getVarCount() 119 // 120 121 //javadoc: StatModel::getVarCount() 122 public int getVarCount() 123 { 124 125 int retVal = getVarCount_0(nativeObj); 126 127 return retVal; 128 } 129 130 131 @Override 132 protected void finalize() throws Throwable { 133 delete(nativeObj); 134 } 135 136 137 138 // C++: bool empty() 139 private static native boolean empty_0(long nativeObj); 140 141 // C++: bool isClassifier() 142 private static native boolean isClassifier_0(long nativeObj); 143 144 // C++: bool isTrained() 145 private static native boolean isTrained_0(long nativeObj); 146 147 // C++: bool train(Mat samples, int layout, Mat responses) 148 private static native boolean train_0(long nativeObj, long samples_nativeObj, int layout, long responses_nativeObj); 149 150 // C++: float predict(Mat samples, Mat& results = Mat(), int flags = 0) 151 private static native float predict_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags); 152 private static native float predict_1(long nativeObj, long samples_nativeObj); 153 154 // C++: int getVarCount() 155 private static native int getVarCount_0(long nativeObj); 156 157 // native support for java finalize() 158 private static native void delete(long nativeObj); 159 160}