001
002//
003// This file is auto-generated. Please don't modify it!
004//
005package org.opencv.ml;
006
007import java.lang.String;
008import org.opencv.core.Mat;
009import org.opencv.core.TermCriteria;
010
011// C++: class ANN_MLP
012//javadoc: ANN_MLP
013public class ANN_MLP extends StatModel {
014
015    protected ANN_MLP(long addr) { super(addr); }
016
017
018    public static final int
019            BACKPROP = 0,
020            RPROP = 1,
021            IDENTITY = 0,
022            SIGMOID_SYM = 1,
023            GAUSSIAN = 2,
024            UPDATE_WEIGHTS = 1,
025            NO_INPUT_SCALE = 2,
026            NO_OUTPUT_SCALE = 4;
027
028
029    //
030    // C++:  Mat getLayerSizes()
031    //
032
033    //javadoc: ANN_MLP::getLayerSizes()
034    public  Mat getLayerSizes()
035    {
036        
037        Mat retVal = new Mat(getLayerSizes_0(nativeObj));
038        
039        return retVal;
040    }
041
042
043    //
044    // C++:  Mat getWeights(int layerIdx)
045    //
046
047    //javadoc: ANN_MLP::getWeights(layerIdx)
048    public  Mat getWeights(int layerIdx)
049    {
050        
051        Mat retVal = new Mat(getWeights_0(nativeObj, layerIdx));
052        
053        return retVal;
054    }
055
056
057    //
058    // C++: static Ptr_ANN_MLP create()
059    //
060
061    //javadoc: ANN_MLP::create()
062    public static ANN_MLP create()
063    {
064        
065        ANN_MLP retVal = new ANN_MLP(create_0());
066        
067        return retVal;
068    }
069
070
071    //
072    // C++: static Ptr_ANN_MLP load(String filepath)
073    //
074
075    //javadoc: ANN_MLP::load(filepath)
076    public static ANN_MLP load(String filepath)
077    {
078        
079        ANN_MLP retVal = new ANN_MLP(load_0(filepath));
080        
081        return retVal;
082    }
083
084
085    //
086    // C++:  TermCriteria getTermCriteria()
087    //
088
089    //javadoc: ANN_MLP::getTermCriteria()
090    public  TermCriteria getTermCriteria()
091    {
092        
093        TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj));
094        
095        return retVal;
096    }
097
098
099    //
100    // C++:  double getBackpropMomentumScale()
101    //
102
103    //javadoc: ANN_MLP::getBackpropMomentumScale()
104    public  double getBackpropMomentumScale()
105    {
106        
107        double retVal = getBackpropMomentumScale_0(nativeObj);
108        
109        return retVal;
110    }
111
112
113    //
114    // C++:  double getBackpropWeightScale()
115    //
116
117    //javadoc: ANN_MLP::getBackpropWeightScale()
118    public  double getBackpropWeightScale()
119    {
120        
121        double retVal = getBackpropWeightScale_0(nativeObj);
122        
123        return retVal;
124    }
125
126
127    //
128    // C++:  double getRpropDW0()
129    //
130
131    //javadoc: ANN_MLP::getRpropDW0()
132    public  double getRpropDW0()
133    {
134        
135        double retVal = getRpropDW0_0(nativeObj);
136        
137        return retVal;
138    }
139
140
141    //
142    // C++:  double getRpropDWMax()
143    //
144
145    //javadoc: ANN_MLP::getRpropDWMax()
146    public  double getRpropDWMax()
147    {
148        
149        double retVal = getRpropDWMax_0(nativeObj);
150        
151        return retVal;
152    }
153
154
155    //
156    // C++:  double getRpropDWMin()
157    //
158
159    //javadoc: ANN_MLP::getRpropDWMin()
160    public  double getRpropDWMin()
161    {
162        
163        double retVal = getRpropDWMin_0(nativeObj);
164        
165        return retVal;
166    }
167
168
169    //
170    // C++:  double getRpropDWMinus()
171    //
172
173    //javadoc: ANN_MLP::getRpropDWMinus()
174    public  double getRpropDWMinus()
175    {
176        
177        double retVal = getRpropDWMinus_0(nativeObj);
178        
179        return retVal;
180    }
181
182
183    //
184    // C++:  double getRpropDWPlus()
185    //
186
187    //javadoc: ANN_MLP::getRpropDWPlus()
188    public  double getRpropDWPlus()
189    {
190        
191        double retVal = getRpropDWPlus_0(nativeObj);
192        
193        return retVal;
194    }
195
196
197    //
198    // C++:  int getTrainMethod()
199    //
200
201    //javadoc: ANN_MLP::getTrainMethod()
202    public  int getTrainMethod()
203    {
204        
205        int retVal = getTrainMethod_0(nativeObj);
206        
207        return retVal;
208    }
209
210
211    //
212    // C++:  void setActivationFunction(int type, double param1 = 0, double param2 = 0)
213    //
214
215    //javadoc: ANN_MLP::setActivationFunction(type, param1, param2)
216    public  void setActivationFunction(int type, double param1, double param2)
217    {
218        
219        setActivationFunction_0(nativeObj, type, param1, param2);
220        
221        return;
222    }
223
224    //javadoc: ANN_MLP::setActivationFunction(type)
225    public  void setActivationFunction(int type)
226    {
227        
228        setActivationFunction_1(nativeObj, type);
229        
230        return;
231    }
232
233
234    //
235    // C++:  void setBackpropMomentumScale(double val)
236    //
237
238    //javadoc: ANN_MLP::setBackpropMomentumScale(val)
239    public  void setBackpropMomentumScale(double val)
240    {
241        
242        setBackpropMomentumScale_0(nativeObj, val);
243        
244        return;
245    }
246
247
248    //
249    // C++:  void setBackpropWeightScale(double val)
250    //
251
252    //javadoc: ANN_MLP::setBackpropWeightScale(val)
253    public  void setBackpropWeightScale(double val)
254    {
255        
256        setBackpropWeightScale_0(nativeObj, val);
257        
258        return;
259    }
260
261
262    //
263    // C++:  void setLayerSizes(Mat _layer_sizes)
264    //
265
266    //javadoc: ANN_MLP::setLayerSizes(_layer_sizes)
267    public  void setLayerSizes(Mat _layer_sizes)
268    {
269        
270        setLayerSizes_0(nativeObj, _layer_sizes.nativeObj);
271        
272        return;
273    }
274
275
276    //
277    // C++:  void setRpropDW0(double val)
278    //
279
280    //javadoc: ANN_MLP::setRpropDW0(val)
281    public  void setRpropDW0(double val)
282    {
283        
284        setRpropDW0_0(nativeObj, val);
285        
286        return;
287    }
288
289
290    //
291    // C++:  void setRpropDWMax(double val)
292    //
293
294    //javadoc: ANN_MLP::setRpropDWMax(val)
295    public  void setRpropDWMax(double val)
296    {
297        
298        setRpropDWMax_0(nativeObj, val);
299        
300        return;
301    }
302
303
304    //
305    // C++:  void setRpropDWMin(double val)
306    //
307
308    //javadoc: ANN_MLP::setRpropDWMin(val)
309    public  void setRpropDWMin(double val)
310    {
311        
312        setRpropDWMin_0(nativeObj, val);
313        
314        return;
315    }
316
317
318    //
319    // C++:  void setRpropDWMinus(double val)
320    //
321
322    //javadoc: ANN_MLP::setRpropDWMinus(val)
323    public  void setRpropDWMinus(double val)
324    {
325        
326        setRpropDWMinus_0(nativeObj, val);
327        
328        return;
329    }
330
331
332    //
333    // C++:  void setRpropDWPlus(double val)
334    //
335
336    //javadoc: ANN_MLP::setRpropDWPlus(val)
337    public  void setRpropDWPlus(double val)
338    {
339        
340        setRpropDWPlus_0(nativeObj, val);
341        
342        return;
343    }
344
345
346    //
347    // C++:  void setTermCriteria(TermCriteria val)
348    //
349
350    //javadoc: ANN_MLP::setTermCriteria(val)
351    public  void setTermCriteria(TermCriteria val)
352    {
353        
354        setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon);
355        
356        return;
357    }
358
359
360    //
361    // C++:  void setTrainMethod(int method, double param1 = 0, double param2 = 0)
362    //
363
364    //javadoc: ANN_MLP::setTrainMethod(method, param1, param2)
365    public  void setTrainMethod(int method, double param1, double param2)
366    {
367        
368        setTrainMethod_0(nativeObj, method, param1, param2);
369        
370        return;
371    }
372
373    //javadoc: ANN_MLP::setTrainMethod(method)
374    public  void setTrainMethod(int method)
375    {
376        
377        setTrainMethod_1(nativeObj, method);
378        
379        return;
380    }
381
382
383    @Override
384    protected void finalize() throws Throwable {
385        delete(nativeObj);
386    }
387
388
389
390    // C++:  Mat getLayerSizes()
391    private static native long getLayerSizes_0(long nativeObj);
392
393    // C++:  Mat getWeights(int layerIdx)
394    private static native long getWeights_0(long nativeObj, int layerIdx);
395
396    // C++: static Ptr_ANN_MLP create()
397    private static native long create_0();
398
399    // C++: static Ptr_ANN_MLP load(String filepath)
400    private static native long load_0(String filepath);
401
402    // C++:  TermCriteria getTermCriteria()
403    private static native double[] getTermCriteria_0(long nativeObj);
404
405    // C++:  double getBackpropMomentumScale()
406    private static native double getBackpropMomentumScale_0(long nativeObj);
407
408    // C++:  double getBackpropWeightScale()
409    private static native double getBackpropWeightScale_0(long nativeObj);
410
411    // C++:  double getRpropDW0()
412    private static native double getRpropDW0_0(long nativeObj);
413
414    // C++:  double getRpropDWMax()
415    private static native double getRpropDWMax_0(long nativeObj);
416
417    // C++:  double getRpropDWMin()
418    private static native double getRpropDWMin_0(long nativeObj);
419
420    // C++:  double getRpropDWMinus()
421    private static native double getRpropDWMinus_0(long nativeObj);
422
423    // C++:  double getRpropDWPlus()
424    private static native double getRpropDWPlus_0(long nativeObj);
425
426    // C++:  int getTrainMethod()
427    private static native int getTrainMethod_0(long nativeObj);
428
429    // C++:  void setActivationFunction(int type, double param1 = 0, double param2 = 0)
430    private static native void setActivationFunction_0(long nativeObj, int type, double param1, double param2);
431    private static native void setActivationFunction_1(long nativeObj, int type);
432
433    // C++:  void setBackpropMomentumScale(double val)
434    private static native void setBackpropMomentumScale_0(long nativeObj, double val);
435
436    // C++:  void setBackpropWeightScale(double val)
437    private static native void setBackpropWeightScale_0(long nativeObj, double val);
438
439    // C++:  void setLayerSizes(Mat _layer_sizes)
440    private static native void setLayerSizes_0(long nativeObj, long _layer_sizes_nativeObj);
441
442    // C++:  void setRpropDW0(double val)
443    private static native void setRpropDW0_0(long nativeObj, double val);
444
445    // C++:  void setRpropDWMax(double val)
446    private static native void setRpropDWMax_0(long nativeObj, double val);
447
448    // C++:  void setRpropDWMin(double val)
449    private static native void setRpropDWMin_0(long nativeObj, double val);
450
451    // C++:  void setRpropDWMinus(double val)
452    private static native void setRpropDWMinus_0(long nativeObj, double val);
453
454    // C++:  void setRpropDWPlus(double val)
455    private static native void setRpropDWPlus_0(long nativeObj, double val);
456
457    // C++:  void setTermCriteria(TermCriteria val)
458    private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon);
459
460    // C++:  void setTrainMethod(int method, double param1 = 0, double param2 = 0)
461    private static native void setTrainMethod_0(long nativeObj, int method, double param1, double param2);
462    private static native void setTrainMethod_1(long nativeObj, int method);
463
464    // native support for java finalize()
465    private static native void delete(long nativeObj);
466
467}