001 002// 003// This file is auto-generated. Please don't modify it! 004// 005package org.opencv.ml; 006 007import java.lang.String; 008import org.opencv.core.Mat; 009import org.opencv.core.TermCriteria; 010 011// C++: class ANN_MLP 012//javadoc: ANN_MLP 013public class ANN_MLP extends StatModel { 014 015 protected ANN_MLP(long addr) { super(addr); } 016 017 018 public static final int 019 BACKPROP = 0, 020 RPROP = 1, 021 IDENTITY = 0, 022 SIGMOID_SYM = 1, 023 GAUSSIAN = 2, 024 UPDATE_WEIGHTS = 1, 025 NO_INPUT_SCALE = 2, 026 NO_OUTPUT_SCALE = 4; 027 028 029 // 030 // C++: Mat getLayerSizes() 031 // 032 033 //javadoc: ANN_MLP::getLayerSizes() 034 public Mat getLayerSizes() 035 { 036 037 Mat retVal = new Mat(getLayerSizes_0(nativeObj)); 038 039 return retVal; 040 } 041 042 043 // 044 // C++: Mat getWeights(int layerIdx) 045 // 046 047 //javadoc: ANN_MLP::getWeights(layerIdx) 048 public Mat getWeights(int layerIdx) 049 { 050 051 Mat retVal = new Mat(getWeights_0(nativeObj, layerIdx)); 052 053 return retVal; 054 } 055 056 057 // 058 // C++: static Ptr_ANN_MLP create() 059 // 060 061 //javadoc: ANN_MLP::create() 062 public static ANN_MLP create() 063 { 064 065 ANN_MLP retVal = new ANN_MLP(create_0()); 066 067 return retVal; 068 } 069 070 071 // 072 // C++: static Ptr_ANN_MLP load(String filepath) 073 // 074 075 //javadoc: ANN_MLP::load(filepath) 076 public static ANN_MLP load(String filepath) 077 { 078 079 ANN_MLP retVal = new ANN_MLP(load_0(filepath)); 080 081 return retVal; 082 } 083 084 085 // 086 // C++: TermCriteria getTermCriteria() 087 // 088 089 //javadoc: ANN_MLP::getTermCriteria() 090 public TermCriteria getTermCriteria() 091 { 092 093 TermCriteria retVal = new TermCriteria(getTermCriteria_0(nativeObj)); 094 095 return retVal; 096 } 097 098 099 // 100 // C++: double getBackpropMomentumScale() 101 // 102 103 //javadoc: ANN_MLP::getBackpropMomentumScale() 104 public double getBackpropMomentumScale() 105 { 106 107 double retVal = getBackpropMomentumScale_0(nativeObj); 108 109 return retVal; 110 } 111 112 113 // 114 // C++: double getBackpropWeightScale() 115 // 116 117 //javadoc: ANN_MLP::getBackpropWeightScale() 118 public double getBackpropWeightScale() 119 { 120 121 double retVal = getBackpropWeightScale_0(nativeObj); 122 123 return retVal; 124 } 125 126 127 // 128 // C++: double getRpropDW0() 129 // 130 131 //javadoc: ANN_MLP::getRpropDW0() 132 public double getRpropDW0() 133 { 134 135 double retVal = getRpropDW0_0(nativeObj); 136 137 return retVal; 138 } 139 140 141 // 142 // C++: double getRpropDWMax() 143 // 144 145 //javadoc: ANN_MLP::getRpropDWMax() 146 public double getRpropDWMax() 147 { 148 149 double retVal = getRpropDWMax_0(nativeObj); 150 151 return retVal; 152 } 153 154 155 // 156 // C++: double getRpropDWMin() 157 // 158 159 //javadoc: ANN_MLP::getRpropDWMin() 160 public double getRpropDWMin() 161 { 162 163 double retVal = getRpropDWMin_0(nativeObj); 164 165 return retVal; 166 } 167 168 169 // 170 // C++: double getRpropDWMinus() 171 // 172 173 //javadoc: ANN_MLP::getRpropDWMinus() 174 public double getRpropDWMinus() 175 { 176 177 double retVal = getRpropDWMinus_0(nativeObj); 178 179 return retVal; 180 } 181 182 183 // 184 // C++: double getRpropDWPlus() 185 // 186 187 //javadoc: ANN_MLP::getRpropDWPlus() 188 public double getRpropDWPlus() 189 { 190 191 double retVal = getRpropDWPlus_0(nativeObj); 192 193 return retVal; 194 } 195 196 197 // 198 // C++: int getTrainMethod() 199 // 200 201 //javadoc: ANN_MLP::getTrainMethod() 202 public int getTrainMethod() 203 { 204 205 int retVal = getTrainMethod_0(nativeObj); 206 207 return retVal; 208 } 209 210 211 // 212 // C++: void setActivationFunction(int type, double param1 = 0, double param2 = 0) 213 // 214 215 //javadoc: ANN_MLP::setActivationFunction(type, param1, param2) 216 public void setActivationFunction(int type, double param1, double param2) 217 { 218 219 setActivationFunction_0(nativeObj, type, param1, param2); 220 221 return; 222 } 223 224 //javadoc: ANN_MLP::setActivationFunction(type) 225 public void setActivationFunction(int type) 226 { 227 228 setActivationFunction_1(nativeObj, type); 229 230 return; 231 } 232 233 234 // 235 // C++: void setBackpropMomentumScale(double val) 236 // 237 238 //javadoc: ANN_MLP::setBackpropMomentumScale(val) 239 public void setBackpropMomentumScale(double val) 240 { 241 242 setBackpropMomentumScale_0(nativeObj, val); 243 244 return; 245 } 246 247 248 // 249 // C++: void setBackpropWeightScale(double val) 250 // 251 252 //javadoc: ANN_MLP::setBackpropWeightScale(val) 253 public void setBackpropWeightScale(double val) 254 { 255 256 setBackpropWeightScale_0(nativeObj, val); 257 258 return; 259 } 260 261 262 // 263 // C++: void setLayerSizes(Mat _layer_sizes) 264 // 265 266 //javadoc: ANN_MLP::setLayerSizes(_layer_sizes) 267 public void setLayerSizes(Mat _layer_sizes) 268 { 269 270 setLayerSizes_0(nativeObj, _layer_sizes.nativeObj); 271 272 return; 273 } 274 275 276 // 277 // C++: void setRpropDW0(double val) 278 // 279 280 //javadoc: ANN_MLP::setRpropDW0(val) 281 public void setRpropDW0(double val) 282 { 283 284 setRpropDW0_0(nativeObj, val); 285 286 return; 287 } 288 289 290 // 291 // C++: void setRpropDWMax(double val) 292 // 293 294 //javadoc: ANN_MLP::setRpropDWMax(val) 295 public void setRpropDWMax(double val) 296 { 297 298 setRpropDWMax_0(nativeObj, val); 299 300 return; 301 } 302 303 304 // 305 // C++: void setRpropDWMin(double val) 306 // 307 308 //javadoc: ANN_MLP::setRpropDWMin(val) 309 public void setRpropDWMin(double val) 310 { 311 312 setRpropDWMin_0(nativeObj, val); 313 314 return; 315 } 316 317 318 // 319 // C++: void setRpropDWMinus(double val) 320 // 321 322 //javadoc: ANN_MLP::setRpropDWMinus(val) 323 public void setRpropDWMinus(double val) 324 { 325 326 setRpropDWMinus_0(nativeObj, val); 327 328 return; 329 } 330 331 332 // 333 // C++: void setRpropDWPlus(double val) 334 // 335 336 //javadoc: ANN_MLP::setRpropDWPlus(val) 337 public void setRpropDWPlus(double val) 338 { 339 340 setRpropDWPlus_0(nativeObj, val); 341 342 return; 343 } 344 345 346 // 347 // C++: void setTermCriteria(TermCriteria val) 348 // 349 350 //javadoc: ANN_MLP::setTermCriteria(val) 351 public void setTermCriteria(TermCriteria val) 352 { 353 354 setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); 355 356 return; 357 } 358 359 360 // 361 // C++: void setTrainMethod(int method, double param1 = 0, double param2 = 0) 362 // 363 364 //javadoc: ANN_MLP::setTrainMethod(method, param1, param2) 365 public void setTrainMethod(int method, double param1, double param2) 366 { 367 368 setTrainMethod_0(nativeObj, method, param1, param2); 369 370 return; 371 } 372 373 //javadoc: ANN_MLP::setTrainMethod(method) 374 public void setTrainMethod(int method) 375 { 376 377 setTrainMethod_1(nativeObj, method); 378 379 return; 380 } 381 382 383 @Override 384 protected void finalize() throws Throwable { 385 delete(nativeObj); 386 } 387 388 389 390 // C++: Mat getLayerSizes() 391 private static native long getLayerSizes_0(long nativeObj); 392 393 // C++: Mat getWeights(int layerIdx) 394 private static native long getWeights_0(long nativeObj, int layerIdx); 395 396 // C++: static Ptr_ANN_MLP create() 397 private static native long create_0(); 398 399 // C++: static Ptr_ANN_MLP load(String filepath) 400 private static native long load_0(String filepath); 401 402 // C++: TermCriteria getTermCriteria() 403 private static native double[] getTermCriteria_0(long nativeObj); 404 405 // C++: double getBackpropMomentumScale() 406 private static native double getBackpropMomentumScale_0(long nativeObj); 407 408 // C++: double getBackpropWeightScale() 409 private static native double getBackpropWeightScale_0(long nativeObj); 410 411 // C++: double getRpropDW0() 412 private static native double getRpropDW0_0(long nativeObj); 413 414 // C++: double getRpropDWMax() 415 private static native double getRpropDWMax_0(long nativeObj); 416 417 // C++: double getRpropDWMin() 418 private static native double getRpropDWMin_0(long nativeObj); 419 420 // C++: double getRpropDWMinus() 421 private static native double getRpropDWMinus_0(long nativeObj); 422 423 // C++: double getRpropDWPlus() 424 private static native double getRpropDWPlus_0(long nativeObj); 425 426 // C++: int getTrainMethod() 427 private static native int getTrainMethod_0(long nativeObj); 428 429 // C++: void setActivationFunction(int type, double param1 = 0, double param2 = 0) 430 private static native void setActivationFunction_0(long nativeObj, int type, double param1, double param2); 431 private static native void setActivationFunction_1(long nativeObj, int type); 432 433 // C++: void setBackpropMomentumScale(double val) 434 private static native void setBackpropMomentumScale_0(long nativeObj, double val); 435 436 // C++: void setBackpropWeightScale(double val) 437 private static native void setBackpropWeightScale_0(long nativeObj, double val); 438 439 // C++: void setLayerSizes(Mat _layer_sizes) 440 private static native void setLayerSizes_0(long nativeObj, long _layer_sizes_nativeObj); 441 442 // C++: void setRpropDW0(double val) 443 private static native void setRpropDW0_0(long nativeObj, double val); 444 445 // C++: void setRpropDWMax(double val) 446 private static native void setRpropDWMax_0(long nativeObj, double val); 447 448 // C++: void setRpropDWMin(double val) 449 private static native void setRpropDWMin_0(long nativeObj, double val); 450 451 // C++: void setRpropDWMinus(double val) 452 private static native void setRpropDWMinus_0(long nativeObj, double val); 453 454 // C++: void setRpropDWPlus(double val) 455 private static native void setRpropDWPlus_0(long nativeObj, double val); 456 457 // C++: void setTermCriteria(TermCriteria val) 458 private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); 459 460 // C++: void setTrainMethod(int method, double param1 = 0, double param2 = 0) 461 private static native void setTrainMethod_0(long nativeObj, int method, double param1, double param2); 462 private static native void setTrainMethod_1(long nativeObj, int method); 463 464 // native support for java finalize() 465 private static native void delete(long nativeObj); 466 467}