001// Copyright (c) FIRST and other WPILib contributors.
002// Open Source Software; you can modify and/or share it under the terms of
003// the WPILib BSD license file in the root directory of this project.
004
005package edu.wpi.first.math.controller;
006
007import edu.wpi.first.math.geometry.Pose2d;
008import edu.wpi.first.math.kinematics.ChassisSpeeds;
009import edu.wpi.first.math.trajectory.Trajectory;
010
011/**
012 * Ramsete is a nonlinear time-varying feedback controller for unicycle models that drives the model
013 * to a desired pose along a two-dimensional trajectory. Why would we need a nonlinear control law
014 * in addition to the linear ones we have used so far like PID? If we use the original approach with
015 * PID controllers for left and right position and velocity states, the controllers only deal with
016 * the local pose. If the robot deviates from the path, there is no way for the controllers to
017 * correct and the robot may not reach the desired global pose. This is due to multiple endpoints
018 * existing for the robot which have the same encoder path arc lengths.
019 *
020 * <p>Instead of using wheel path arc lengths (which are in the robot's local coordinate frame),
021 * nonlinear controllers like pure pursuit and Ramsete use global pose. The controller uses this
022 * extra information to guide a linear reference tracker like the PID controllers back in by
023 * adjusting the references of the PID controllers.
024 *
025 * <p>The paper "Control of Wheeled Mobile Robots: An Experimental Overview" describes a nonlinear
026 * controller for a wheeled vehicle with unicycle-like kinematics; a global pose consisting of x, y,
027 * and theta; and a desired pose consisting of x_d, y_d, and theta_d. We call it Ramsete because
028 * that's the acronym for the title of the book it came from in Italian ("Robotica Articolata e
029 * Mobile per i SErvizi e le TEcnologie").
030 *
031 * <p>See <a href="https://file.tavsys.net/control/controls-engineering-in-frc.pdf">Controls
032 * Engineering in the FIRST Robotics Competition</a> section on Ramsete unicycle controller for a
033 * derivation and analysis.
034 */
035public class RamseteController {
036  @SuppressWarnings("MemberName")
037  private final double m_b;
038
039  @SuppressWarnings("MemberName")
040  private final double m_zeta;
041
042  private Pose2d m_poseError = new Pose2d();
043  private Pose2d m_poseTolerance = new Pose2d();
044  private boolean m_enabled = true;
045
046  /**
047   * Construct a Ramsete unicycle controller.
048   *
049   * @param b Tuning parameter (b &gt; 0 rad²/m²) for which larger values make convergence more
050   *     aggressive like a proportional term.
051   * @param zeta Tuning parameter (0 rad⁻¹ &lt; zeta &lt; 1 rad⁻¹) for which larger values provide
052   *     more damping in response.
053   */
054  @SuppressWarnings("ParameterName")
055  public RamseteController(double b, double zeta) {
056    m_b = b;
057    m_zeta = zeta;
058  }
059
060  /**
061   * Construct a Ramsete unicycle controller. The default arguments for b and zeta of 2.0 rad²/m²
062   * and 0.7 rad⁻¹ have been well-tested to produce desirable results.
063   */
064  public RamseteController() {
065    this(2.0, 0.7);
066  }
067
068  /**
069   * Returns true if the pose error is within tolerance of the reference.
070   *
071   * @return True if the pose error is within tolerance of the reference.
072   */
073  public boolean atReference() {
074    final var eTranslate = m_poseError.getTranslation();
075    final var eRotate = m_poseError.getRotation();
076    final var tolTranslate = m_poseTolerance.getTranslation();
077    final var tolRotate = m_poseTolerance.getRotation();
078    return Math.abs(eTranslate.getX()) < tolTranslate.getX()
079        && Math.abs(eTranslate.getY()) < tolTranslate.getY()
080        && Math.abs(eRotate.getRadians()) < tolRotate.getRadians();
081  }
082
083  /**
084   * Sets the pose error which is considered tolerable for use with atReference().
085   *
086   * @param poseTolerance Pose error which is tolerable.
087   */
088  public void setTolerance(Pose2d poseTolerance) {
089    m_poseTolerance = poseTolerance;
090  }
091
092  /**
093   * Returns the next output of the Ramsete controller.
094   *
095   * <p>The reference pose, linear velocity, and angular velocity should come from a drivetrain
096   * trajectory.
097   *
098   * @param currentPose The current pose.
099   * @param poseRef The desired pose.
100   * @param linearVelocityRefMeters The desired linear velocity in meters per second.
101   * @param angularVelocityRefRadiansPerSecond The desired angular velocity in radians per second.
102   * @return The next controller output.
103   */
104  @SuppressWarnings("LocalVariableName")
105  public ChassisSpeeds calculate(
106      Pose2d currentPose,
107      Pose2d poseRef,
108      double linearVelocityRefMeters,
109      double angularVelocityRefRadiansPerSecond) {
110    if (!m_enabled) {
111      return new ChassisSpeeds(linearVelocityRefMeters, 0.0, angularVelocityRefRadiansPerSecond);
112    }
113
114    m_poseError = poseRef.relativeTo(currentPose);
115
116    // Aliases for equation readability
117    final double eX = m_poseError.getX();
118    final double eY = m_poseError.getY();
119    final double eTheta = m_poseError.getRotation().getRadians();
120    final double vRef = linearVelocityRefMeters;
121    final double omegaRef = angularVelocityRefRadiansPerSecond;
122
123    double k = 2.0 * m_zeta * Math.sqrt(Math.pow(omegaRef, 2) + m_b * Math.pow(vRef, 2));
124
125    return new ChassisSpeeds(
126        vRef * m_poseError.getRotation().getCos() + k * eX,
127        0.0,
128        omegaRef + k * eTheta + m_b * vRef * sinc(eTheta) * eY);
129  }
130
131  /**
132   * Returns the next output of the Ramsete controller.
133   *
134   * <p>The reference pose, linear velocity, and angular velocity should come from a drivetrain
135   * trajectory.
136   *
137   * @param currentPose The current pose.
138   * @param desiredState The desired pose, linear velocity, and angular velocity from a trajectory.
139   * @return The next controller output.
140   */
141  @SuppressWarnings("LocalVariableName")
142  public ChassisSpeeds calculate(Pose2d currentPose, Trajectory.State desiredState) {
143    return calculate(
144        currentPose,
145        desiredState.poseMeters,
146        desiredState.velocityMetersPerSecond,
147        desiredState.velocityMetersPerSecond * desiredState.curvatureRadPerMeter);
148  }
149
150  /**
151   * Enables and disables the controller for troubleshooting purposes.
152   *
153   * @param enabled If the controller is enabled or not.
154   */
155  public void setEnabled(boolean enabled) {
156    m_enabled = enabled;
157  }
158
159  /**
160   * Returns sin(x) / x.
161   *
162   * @param x Value of which to take sinc(x).
163   */
164  @SuppressWarnings("ParameterName")
165  private static double sinc(double x) {
166    if (Math.abs(x) < 1e-9) {
167      return 1.0 - 1.0 / 6.0 * x * x;
168    } else {
169      return Math.sin(x) / x;
170    }
171  }
172}