001// 002// This file is auto-generated. Please don't modify it! 003// 004package org.opencv.ml; 005 006import org.opencv.core.Mat; 007import org.opencv.core.TermCriteria; 008import org.opencv.ml.DTrees; 009import org.opencv.ml.RTrees; 010 011// C++: class RTrees 012/** 013 * The class implements the random forest predictor. 014 * 015 * SEE: REF: ml_intro_rtrees 016 */ 017public class RTrees extends DTrees { 018 019 protected RTrees(long addr) { super(addr); } 020 021 // internal usage only 022 public static RTrees __fromPtr__(long addr) { return new RTrees(addr); } 023 024 // 025 // C++: bool cv::ml::RTrees::getCalculateVarImportance() 026 // 027 028 /** 029 * SEE: setCalculateVarImportance 030 * @return automatically generated 031 */ 032 public boolean getCalculateVarImportance() { 033 return getCalculateVarImportance_0(nativeObj); 034 } 035 036 037 // 038 // C++: void cv::ml::RTrees::setCalculateVarImportance(bool val) 039 // 040 041 /** 042 * getCalculateVarImportance SEE: getCalculateVarImportance 043 * @param val automatically generated 044 */ 045 public void setCalculateVarImportance(boolean val) { 046 setCalculateVarImportance_0(nativeObj, val); 047 } 048 049 050 // 051 // C++: int cv::ml::RTrees::getActiveVarCount() 052 // 053 054 /** 055 * SEE: setActiveVarCount 056 * @return automatically generated 057 */ 058 public int getActiveVarCount() { 059 return getActiveVarCount_0(nativeObj); 060 } 061 062 063 // 064 // C++: void cv::ml::RTrees::setActiveVarCount(int val) 065 // 066 067 /** 068 * getActiveVarCount SEE: getActiveVarCount 069 * @param val automatically generated 070 */ 071 public void setActiveVarCount(int val) { 072 setActiveVarCount_0(nativeObj, val); 073 } 074 075 076 // 077 // C++: TermCriteria cv::ml::RTrees::getTermCriteria() 078 // 079 080 /** 081 * SEE: setTermCriteria 082 * @return automatically generated 083 */ 084 public TermCriteria getTermCriteria() { 085 return new TermCriteria(getTermCriteria_0(nativeObj)); 086 } 087 088 089 // 090 // C++: void cv::ml::RTrees::setTermCriteria(TermCriteria val) 091 // 092 093 /** 094 * getTermCriteria SEE: getTermCriteria 095 * @param val automatically generated 096 */ 097 public void setTermCriteria(TermCriteria val) { 098 setTermCriteria_0(nativeObj, val.type, val.maxCount, val.epsilon); 099 } 100 101 102 // 103 // C++: Mat cv::ml::RTrees::getVarImportance() 104 // 105 106 /** 107 * Returns the variable importance array. 108 * The method returns the variable importance vector, computed at the training stage when 109 * CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is 110 * returned. 111 * @return automatically generated 112 */ 113 public Mat getVarImportance() { 114 return new Mat(getVarImportance_0(nativeObj)); 115 } 116 117 118 // 119 // C++: void cv::ml::RTrees::getVotes(Mat samples, Mat& results, int flags) 120 // 121 122 /** 123 * Returns the result of each individual tree in the forest. 124 * In case the model is a regression problem, the method will return each of the trees' 125 * results for each of the sample cases. If the model is a classifier, it will return 126 * a Mat with samples + 1 rows, where the first row gives the class number and the 127 * following rows return the votes each class had for each sample. 128 * @param samples Array containing the samples for which votes will be calculated. 129 * @param results Array where the result of the calculation will be written. 130 * @param flags Flags for defining the type of RTrees. 131 */ 132 public void getVotes(Mat samples, Mat results, int flags) { 133 getVotes_0(nativeObj, samples.nativeObj, results.nativeObj, flags); 134 } 135 136 137 // 138 // C++: double cv::ml::RTrees::getOOBError() 139 // 140 141 /** 142 * Returns the OOB error value, computed at the training stage when calcOOBError is set to true. 143 * If this flag was set to false, 0 is returned. The OOB error is also scaled by sample weighting. 144 * @return automatically generated 145 */ 146 public double getOOBError() { 147 return getOOBError_0(nativeObj); 148 } 149 150 151 // 152 // C++: static Ptr_RTrees cv::ml::RTrees::create() 153 // 154 155 /** 156 * Creates the empty model. 157 * Use StatModel::train to train the model, StatModel::train to create and train the model, 158 * Algorithm::load to load the pre-trained model. 159 * @return automatically generated 160 */ 161 public static RTrees create() { 162 return RTrees.__fromPtr__(create_0()); 163 } 164 165 166 // 167 // C++: static Ptr_RTrees cv::ml::RTrees::load(String filepath, String nodeName = String()) 168 // 169 170 /** 171 * Loads and creates a serialized RTree from a file 172 * 173 * Use RTree::save to serialize and store an RTree to disk. 174 * Load the RTree from this file again, by calling this function with the path to the file. 175 * Optionally specify the node for the file containing the classifier 176 * 177 * @param filepath path to serialized RTree 178 * @param nodeName name of node containing the classifier 179 * @return automatically generated 180 */ 181 public static RTrees load(String filepath, String nodeName) { 182 return RTrees.__fromPtr__(load_0(filepath, nodeName)); 183 } 184 185 /** 186 * Loads and creates a serialized RTree from a file 187 * 188 * Use RTree::save to serialize and store an RTree to disk. 189 * Load the RTree from this file again, by calling this function with the path to the file. 190 * Optionally specify the node for the file containing the classifier 191 * 192 * @param filepath path to serialized RTree 193 * @return automatically generated 194 */ 195 public static RTrees load(String filepath) { 196 return RTrees.__fromPtr__(load_1(filepath)); 197 } 198 199 200 @Override 201 protected void finalize() throws Throwable { 202 delete(nativeObj); 203 } 204 205 206 207 // C++: bool cv::ml::RTrees::getCalculateVarImportance() 208 private static native boolean getCalculateVarImportance_0(long nativeObj); 209 210 // C++: void cv::ml::RTrees::setCalculateVarImportance(bool val) 211 private static native void setCalculateVarImportance_0(long nativeObj, boolean val); 212 213 // C++: int cv::ml::RTrees::getActiveVarCount() 214 private static native int getActiveVarCount_0(long nativeObj); 215 216 // C++: void cv::ml::RTrees::setActiveVarCount(int val) 217 private static native void setActiveVarCount_0(long nativeObj, int val); 218 219 // C++: TermCriteria cv::ml::RTrees::getTermCriteria() 220 private static native double[] getTermCriteria_0(long nativeObj); 221 222 // C++: void cv::ml::RTrees::setTermCriteria(TermCriteria val) 223 private static native void setTermCriteria_0(long nativeObj, int val_type, int val_maxCount, double val_epsilon); 224 225 // C++: Mat cv::ml::RTrees::getVarImportance() 226 private static native long getVarImportance_0(long nativeObj); 227 228 // C++: void cv::ml::RTrees::getVotes(Mat samples, Mat& results, int flags) 229 private static native void getVotes_0(long nativeObj, long samples_nativeObj, long results_nativeObj, int flags); 230 231 // C++: double cv::ml::RTrees::getOOBError() 232 private static native double getOOBError_0(long nativeObj); 233 234 // C++: static Ptr_RTrees cv::ml::RTrees::create() 235 private static native long create_0(); 236 237 // C++: static Ptr_RTrees cv::ml::RTrees::load(String filepath, String nodeName = String()) 238 private static native long load_0(String filepath, String nodeName); 239 private static native long load_1(String filepath); 240 241 // native support for java finalize() 242 private static native void delete(long nativeObj); 243 244}