001// 002// This file is auto-generated. Please don't modify it! 003// 004package org.opencv.video; 005 006import java.util.ArrayList; 007import java.util.List; 008import org.opencv.core.Mat; 009import org.opencv.core.MatOfByte; 010import org.opencv.core.MatOfFloat; 011import org.opencv.core.MatOfPoint2f; 012import org.opencv.core.Rect; 013import org.opencv.core.RotatedRect; 014import org.opencv.core.Size; 015import org.opencv.core.TermCriteria; 016import org.opencv.utils.Converters; 017import org.opencv.video.BackgroundSubtractorKNN; 018import org.opencv.video.BackgroundSubtractorMOG2; 019 020// C++: class Video 021 022public class Video { 023 024 private static final int 025 CV_LKFLOW_INITIAL_GUESSES = 4, 026 CV_LKFLOW_GET_MIN_EIGENVALS = 8; 027 028 029 // C++: enum <unnamed> 030 public static final int 031 OPTFLOW_USE_INITIAL_FLOW = 4, 032 OPTFLOW_LK_GET_MIN_EIGENVALS = 8, 033 OPTFLOW_FARNEBACK_GAUSSIAN = 256, 034 MOTION_TRANSLATION = 0, 035 MOTION_EUCLIDEAN = 1, 036 MOTION_AFFINE = 2, 037 MOTION_HOMOGRAPHY = 3; 038 039 040 // C++: enum MODE (cv.detail.TrackerSamplerCSC.MODE) 041 public static final int 042 TrackerSamplerCSC_MODE_INIT_POS = 1, 043 TrackerSamplerCSC_MODE_INIT_NEG = 2, 044 TrackerSamplerCSC_MODE_TRACK_POS = 3, 045 TrackerSamplerCSC_MODE_TRACK_NEG = 4, 046 TrackerSamplerCSC_MODE_DETECT = 5; 047 048 049 // 050 // C++: Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true) 051 // 052 053 /** 054 * Creates MOG2 Background Subtractor 055 * 056 * @param history Length of the history. 057 * @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model 058 * to decide whether a pixel is well described by the background model. This parameter does not 059 * affect the background update. 060 * @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the 061 * speed a bit, so if you do not need this feature, set the parameter to false. 062 * @return automatically generated 063 */ 064 public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold, boolean detectShadows) { 065 return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_0(history, varThreshold, detectShadows)); 066 } 067 068 /** 069 * Creates MOG2 Background Subtractor 070 * 071 * @param history Length of the history. 072 * @param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model 073 * to decide whether a pixel is well described by the background model. This parameter does not 074 * affect the background update. 075 * speed a bit, so if you do not need this feature, set the parameter to false. 076 * @return automatically generated 077 */ 078 public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history, double varThreshold) { 079 return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_1(history, varThreshold)); 080 } 081 082 /** 083 * Creates MOG2 Background Subtractor 084 * 085 * @param history Length of the history. 086 * to decide whether a pixel is well described by the background model. This parameter does not 087 * affect the background update. 088 * speed a bit, so if you do not need this feature, set the parameter to false. 089 * @return automatically generated 090 */ 091 public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2(int history) { 092 return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_2(history)); 093 } 094 095 /** 096 * Creates MOG2 Background Subtractor 097 * 098 * to decide whether a pixel is well described by the background model. This parameter does not 099 * affect the background update. 100 * speed a bit, so if you do not need this feature, set the parameter to false. 101 * @return automatically generated 102 */ 103 public static BackgroundSubtractorMOG2 createBackgroundSubtractorMOG2() { 104 return BackgroundSubtractorMOG2.__fromPtr__(createBackgroundSubtractorMOG2_3()); 105 } 106 107 108 // 109 // C++: Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true) 110 // 111 112 /** 113 * Creates KNN Background Subtractor 114 * 115 * @param history Length of the history. 116 * @param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide 117 * whether a pixel is close to that sample. This parameter does not affect the background update. 118 * @param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the 119 * speed a bit, so if you do not need this feature, set the parameter to false. 120 * @return automatically generated 121 */ 122 public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold, boolean detectShadows) { 123 return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_0(history, dist2Threshold, detectShadows)); 124 } 125 126 /** 127 * Creates KNN Background Subtractor 128 * 129 * @param history Length of the history. 130 * @param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide 131 * whether a pixel is close to that sample. This parameter does not affect the background update. 132 * speed a bit, so if you do not need this feature, set the parameter to false. 133 * @return automatically generated 134 */ 135 public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history, double dist2Threshold) { 136 return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_1(history, dist2Threshold)); 137 } 138 139 /** 140 * Creates KNN Background Subtractor 141 * 142 * @param history Length of the history. 143 * whether a pixel is close to that sample. This parameter does not affect the background update. 144 * speed a bit, so if you do not need this feature, set the parameter to false. 145 * @return automatically generated 146 */ 147 public static BackgroundSubtractorKNN createBackgroundSubtractorKNN(int history) { 148 return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_2(history)); 149 } 150 151 /** 152 * Creates KNN Background Subtractor 153 * 154 * whether a pixel is close to that sample. This parameter does not affect the background update. 155 * speed a bit, so if you do not need this feature, set the parameter to false. 156 * @return automatically generated 157 */ 158 public static BackgroundSubtractorKNN createBackgroundSubtractorKNN() { 159 return BackgroundSubtractorKNN.__fromPtr__(createBackgroundSubtractorKNN_3()); 160 } 161 162 163 // 164 // C++: RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria) 165 // 166 167 /** 168 * Finds an object center, size, and orientation. 169 * 170 * @param probImage Back projection of the object histogram. See calcBackProject. 171 * @param window Initial search window. 172 * @param criteria Stop criteria for the underlying meanShift. 173 * returns 174 * (in old interfaces) Number of iterations CAMSHIFT took to converge 175 * The function implements the CAMSHIFT object tracking algorithm CITE: Bradski98 . First, it finds an 176 * object center using meanShift and then adjusts the window size and finds the optimal rotation. The 177 * function returns the rotated rectangle structure that includes the object position, size, and 178 * orientation. The next position of the search window can be obtained with RotatedRect::boundingRect() 179 * 180 * See the OpenCV sample camshiftdemo.c that tracks colored objects. 181 * 182 * <b>Note:</b> 183 * <ul> 184 * <li> 185 * (Python) A sample explaining the camshift tracking algorithm can be found at 186 * opencv_source_code/samples/python/camshift.py 187 * </li> 188 * </ul> 189 * @return automatically generated 190 */ 191 public static RotatedRect CamShift(Mat probImage, Rect window, TermCriteria criteria) { 192 double[] window_out = new double[4]; 193 RotatedRect retVal = new RotatedRect(CamShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon)); 194 if(window!=null){ window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; } 195 return retVal; 196 } 197 198 199 // 200 // C++: int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria) 201 // 202 203 /** 204 * Finds an object on a back projection image. 205 * 206 * @param probImage Back projection of the object histogram. See calcBackProject for details. 207 * @param window Initial search window. 208 * @param criteria Stop criteria for the iterative search algorithm. 209 * returns 210 * : Number of iterations CAMSHIFT took to converge. 211 * The function implements the iterative object search algorithm. It takes the input back projection of 212 * an object and the initial position. The mass center in window of the back projection image is 213 * computed and the search window center shifts to the mass center. The procedure is repeated until the 214 * specified number of iterations criteria.maxCount is done or until the window center shifts by less 215 * than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search 216 * window size or orientation do not change during the search. You can simply pass the output of 217 * calcBackProject to this function. But better results can be obtained if you pre-filter the back 218 * projection and remove the noise. For example, you can do this by retrieving connected components 219 * with findContours , throwing away contours with small area ( contourArea ), and rendering the 220 * remaining contours with drawContours. 221 * @return automatically generated 222 */ 223 public static int meanShift(Mat probImage, Rect window, TermCriteria criteria) { 224 double[] window_out = new double[4]; 225 int retVal = meanShift_0(probImage.nativeObj, window.x, window.y, window.width, window.height, window_out, criteria.type, criteria.maxCount, criteria.epsilon); 226 if(window!=null){ window.x = (int)window_out[0]; window.y = (int)window_out[1]; window.width = (int)window_out[2]; window.height = (int)window_out[3]; } 227 return retVal; 228 } 229 230 231 // 232 // C++: int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true) 233 // 234 235 /** 236 * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. 237 * 238 * @param img 8-bit input image. 239 * @param pyramid output pyramid. 240 * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of 241 * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. 242 * @param maxLevel 0-based maximal pyramid level number. 243 * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is 244 * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. 245 * @param pyrBorder the border mode for pyramid layers. 246 * @param derivBorder the border mode for gradients. 247 * @param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false 248 * to force data copying. 249 * @return number of levels in constructed pyramid. Can be less than maxLevel. 250 */ 251 public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage) { 252 Mat pyramid_mat = new Mat(); 253 int retVal = buildOpticalFlowPyramid_0(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder, tryReuseInputImage); 254 Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); 255 pyramid_mat.release(); 256 return retVal; 257 } 258 259 /** 260 * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. 261 * 262 * @param img 8-bit input image. 263 * @param pyramid output pyramid. 264 * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of 265 * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. 266 * @param maxLevel 0-based maximal pyramid level number. 267 * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is 268 * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. 269 * @param pyrBorder the border mode for pyramid layers. 270 * @param derivBorder the border mode for gradients. 271 * to force data copying. 272 * @return number of levels in constructed pyramid. Can be less than maxLevel. 273 */ 274 public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder) { 275 Mat pyramid_mat = new Mat(); 276 int retVal = buildOpticalFlowPyramid_1(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder, derivBorder); 277 Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); 278 pyramid_mat.release(); 279 return retVal; 280 } 281 282 /** 283 * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. 284 * 285 * @param img 8-bit input image. 286 * @param pyramid output pyramid. 287 * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of 288 * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. 289 * @param maxLevel 0-based maximal pyramid level number. 290 * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is 291 * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. 292 * @param pyrBorder the border mode for pyramid layers. 293 * to force data copying. 294 * @return number of levels in constructed pyramid. Can be less than maxLevel. 295 */ 296 public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, boolean withDerivatives, int pyrBorder) { 297 Mat pyramid_mat = new Mat(); 298 int retVal = buildOpticalFlowPyramid_2(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives, pyrBorder); 299 Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); 300 pyramid_mat.release(); 301 return retVal; 302 } 303 304 /** 305 * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. 306 * 307 * @param img 8-bit input image. 308 * @param pyramid output pyramid. 309 * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of 310 * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. 311 * @param maxLevel 0-based maximal pyramid level number. 312 * @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is 313 * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. 314 * to force data copying. 315 * @return number of levels in constructed pyramid. Can be less than maxLevel. 316 */ 317 public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel, boolean withDerivatives) { 318 Mat pyramid_mat = new Mat(); 319 int retVal = buildOpticalFlowPyramid_3(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel, withDerivatives); 320 Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); 321 pyramid_mat.release(); 322 return retVal; 323 } 324 325 /** 326 * Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK. 327 * 328 * @param img 8-bit input image. 329 * @param pyramid output pyramid. 330 * @param winSize window size of optical flow algorithm. Must be not less than winSize argument of 331 * calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels. 332 * @param maxLevel 0-based maximal pyramid level number. 333 * constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally. 334 * to force data copying. 335 * @return number of levels in constructed pyramid. Can be less than maxLevel. 336 */ 337 public static int buildOpticalFlowPyramid(Mat img, List<Mat> pyramid, Size winSize, int maxLevel) { 338 Mat pyramid_mat = new Mat(); 339 int retVal = buildOpticalFlowPyramid_4(img.nativeObj, pyramid_mat.nativeObj, winSize.width, winSize.height, maxLevel); 340 Converters.Mat_to_vector_Mat(pyramid_mat, pyramid); 341 pyramid_mat.release(); 342 return retVal; 343 } 344 345 346 // 347 // C++: void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4) 348 // 349 350 /** 351 * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with 352 * pyramids. 353 * 354 * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. 355 * @param nextImg second input image or pyramid of the same size and the same type as prevImg. 356 * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be 357 * single-precision floating-point numbers. 358 * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) 359 * containing the calculated new positions of input features in the second image; when 360 * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. 361 * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if 362 * the flow for the corresponding features has been found, otherwise, it is set to 0. 363 * @param err output vector of errors; each element of the vector is set to an error for the 364 * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't 365 * found then the error is not defined (use the status parameter to find such cases). 366 * @param winSize size of the search window at each pyramid level. 367 * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single 368 * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then 369 * algorithm will use as many levels as pyramids have but no more than maxLevel. 370 * @param criteria parameter, specifying the termination criteria of the iterative search algorithm 371 * (after the specified maximum number of iterations criteria.maxCount or when the search window 372 * moves by less than criteria.epsilon. 373 * @param flags operation flags: 374 * <ul> 375 * <li> 376 * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is 377 * not set, then prevPts is copied to nextPts and is considered the initial estimate. 378 * </li> 379 * <li> 380 * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see 381 * minEigThreshold description); if the flag is not set, then L1 distance between patches 382 * around the original and a moved point, divided by number of pixels in a window, is used as a 383 * error measure. 384 * @param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of 385 * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided 386 * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding 387 * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a 388 * performance boost. 389 * </li> 390 * </ul> 391 * 392 * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See 393 * CITE: Bouguet00 . The function is parallelized with the TBB library. 394 * 395 * <b>Note:</b> 396 * 397 * <ul> 398 * <li> 399 * An example using the Lucas-Kanade optical flow algorithm can be found at 400 * opencv_source_code/samples/cpp/lkdemo.cpp 401 * </li> 402 * <li> 403 * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at 404 * opencv_source_code/samples/python/lk_track.py 405 * </li> 406 * <li> 407 * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at 408 * opencv_source_code/samples/python/lk_homography.py 409 * </li> 410 * </ul> 411 */ 412 public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags, double minEigThreshold) { 413 Mat prevPts_mat = prevPts; 414 Mat nextPts_mat = nextPts; 415 Mat status_mat = status; 416 Mat err_mat = err; 417 calcOpticalFlowPyrLK_0(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags, minEigThreshold); 418 } 419 420 /** 421 * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with 422 * pyramids. 423 * 424 * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. 425 * @param nextImg second input image or pyramid of the same size and the same type as prevImg. 426 * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be 427 * single-precision floating-point numbers. 428 * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) 429 * containing the calculated new positions of input features in the second image; when 430 * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. 431 * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if 432 * the flow for the corresponding features has been found, otherwise, it is set to 0. 433 * @param err output vector of errors; each element of the vector is set to an error for the 434 * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't 435 * found then the error is not defined (use the status parameter to find such cases). 436 * @param winSize size of the search window at each pyramid level. 437 * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single 438 * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then 439 * algorithm will use as many levels as pyramids have but no more than maxLevel. 440 * @param criteria parameter, specifying the termination criteria of the iterative search algorithm 441 * (after the specified maximum number of iterations criteria.maxCount or when the search window 442 * moves by less than criteria.epsilon. 443 * @param flags operation flags: 444 * <ul> 445 * <li> 446 * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is 447 * not set, then prevPts is copied to nextPts and is considered the initial estimate. 448 * </li> 449 * <li> 450 * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see 451 * minEigThreshold description); if the flag is not set, then L1 distance between patches 452 * around the original and a moved point, divided by number of pixels in a window, is used as a 453 * error measure. 454 * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided 455 * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding 456 * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a 457 * performance boost. 458 * </li> 459 * </ul> 460 * 461 * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See 462 * CITE: Bouguet00 . The function is parallelized with the TBB library. 463 * 464 * <b>Note:</b> 465 * 466 * <ul> 467 * <li> 468 * An example using the Lucas-Kanade optical flow algorithm can be found at 469 * opencv_source_code/samples/cpp/lkdemo.cpp 470 * </li> 471 * <li> 472 * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at 473 * opencv_source_code/samples/python/lk_track.py 474 * </li> 475 * <li> 476 * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at 477 * opencv_source_code/samples/python/lk_homography.py 478 * </li> 479 * </ul> 480 */ 481 public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria, int flags) { 482 Mat prevPts_mat = prevPts; 483 Mat nextPts_mat = nextPts; 484 Mat status_mat = status; 485 Mat err_mat = err; 486 calcOpticalFlowPyrLK_1(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon, flags); 487 } 488 489 /** 490 * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with 491 * pyramids. 492 * 493 * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. 494 * @param nextImg second input image or pyramid of the same size and the same type as prevImg. 495 * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be 496 * single-precision floating-point numbers. 497 * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) 498 * containing the calculated new positions of input features in the second image; when 499 * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. 500 * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if 501 * the flow for the corresponding features has been found, otherwise, it is set to 0. 502 * @param err output vector of errors; each element of the vector is set to an error for the 503 * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't 504 * found then the error is not defined (use the status parameter to find such cases). 505 * @param winSize size of the search window at each pyramid level. 506 * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single 507 * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then 508 * algorithm will use as many levels as pyramids have but no more than maxLevel. 509 * @param criteria parameter, specifying the termination criteria of the iterative search algorithm 510 * (after the specified maximum number of iterations criteria.maxCount or when the search window 511 * moves by less than criteria.epsilon. 512 * <ul> 513 * <li> 514 * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is 515 * not set, then prevPts is copied to nextPts and is considered the initial estimate. 516 * </li> 517 * <li> 518 * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see 519 * minEigThreshold description); if the flag is not set, then L1 distance between patches 520 * around the original and a moved point, divided by number of pixels in a window, is used as a 521 * error measure. 522 * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided 523 * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding 524 * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a 525 * performance boost. 526 * </li> 527 * </ul> 528 * 529 * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See 530 * CITE: Bouguet00 . The function is parallelized with the TBB library. 531 * 532 * <b>Note:</b> 533 * 534 * <ul> 535 * <li> 536 * An example using the Lucas-Kanade optical flow algorithm can be found at 537 * opencv_source_code/samples/cpp/lkdemo.cpp 538 * </li> 539 * <li> 540 * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at 541 * opencv_source_code/samples/python/lk_track.py 542 * </li> 543 * <li> 544 * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at 545 * opencv_source_code/samples/python/lk_homography.py 546 * </li> 547 * </ul> 548 */ 549 public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel, TermCriteria criteria) { 550 Mat prevPts_mat = prevPts; 551 Mat nextPts_mat = nextPts; 552 Mat status_mat = status; 553 Mat err_mat = err; 554 calcOpticalFlowPyrLK_2(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel, criteria.type, criteria.maxCount, criteria.epsilon); 555 } 556 557 /** 558 * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with 559 * pyramids. 560 * 561 * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. 562 * @param nextImg second input image or pyramid of the same size and the same type as prevImg. 563 * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be 564 * single-precision floating-point numbers. 565 * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) 566 * containing the calculated new positions of input features in the second image; when 567 * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. 568 * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if 569 * the flow for the corresponding features has been found, otherwise, it is set to 0. 570 * @param err output vector of errors; each element of the vector is set to an error for the 571 * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't 572 * found then the error is not defined (use the status parameter to find such cases). 573 * @param winSize size of the search window at each pyramid level. 574 * @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single 575 * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then 576 * algorithm will use as many levels as pyramids have but no more than maxLevel. 577 * (after the specified maximum number of iterations criteria.maxCount or when the search window 578 * moves by less than criteria.epsilon. 579 * <ul> 580 * <li> 581 * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is 582 * not set, then prevPts is copied to nextPts and is considered the initial estimate. 583 * </li> 584 * <li> 585 * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see 586 * minEigThreshold description); if the flag is not set, then L1 distance between patches 587 * around the original and a moved point, divided by number of pixels in a window, is used as a 588 * error measure. 589 * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided 590 * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding 591 * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a 592 * performance boost. 593 * </li> 594 * </ul> 595 * 596 * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See 597 * CITE: Bouguet00 . The function is parallelized with the TBB library. 598 * 599 * <b>Note:</b> 600 * 601 * <ul> 602 * <li> 603 * An example using the Lucas-Kanade optical flow algorithm can be found at 604 * opencv_source_code/samples/cpp/lkdemo.cpp 605 * </li> 606 * <li> 607 * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at 608 * opencv_source_code/samples/python/lk_track.py 609 * </li> 610 * <li> 611 * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at 612 * opencv_source_code/samples/python/lk_homography.py 613 * </li> 614 * </ul> 615 */ 616 public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize, int maxLevel) { 617 Mat prevPts_mat = prevPts; 618 Mat nextPts_mat = nextPts; 619 Mat status_mat = status; 620 Mat err_mat = err; 621 calcOpticalFlowPyrLK_3(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height, maxLevel); 622 } 623 624 /** 625 * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with 626 * pyramids. 627 * 628 * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. 629 * @param nextImg second input image or pyramid of the same size and the same type as prevImg. 630 * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be 631 * single-precision floating-point numbers. 632 * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) 633 * containing the calculated new positions of input features in the second image; when 634 * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. 635 * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if 636 * the flow for the corresponding features has been found, otherwise, it is set to 0. 637 * @param err output vector of errors; each element of the vector is set to an error for the 638 * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't 639 * found then the error is not defined (use the status parameter to find such cases). 640 * @param winSize size of the search window at each pyramid level. 641 * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then 642 * algorithm will use as many levels as pyramids have but no more than maxLevel. 643 * (after the specified maximum number of iterations criteria.maxCount or when the search window 644 * moves by less than criteria.epsilon. 645 * <ul> 646 * <li> 647 * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is 648 * not set, then prevPts is copied to nextPts and is considered the initial estimate. 649 * </li> 650 * <li> 651 * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see 652 * minEigThreshold description); if the flag is not set, then L1 distance between patches 653 * around the original and a moved point, divided by number of pixels in a window, is used as a 654 * error measure. 655 * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided 656 * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding 657 * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a 658 * performance boost. 659 * </li> 660 * </ul> 661 * 662 * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See 663 * CITE: Bouguet00 . The function is parallelized with the TBB library. 664 * 665 * <b>Note:</b> 666 * 667 * <ul> 668 * <li> 669 * An example using the Lucas-Kanade optical flow algorithm can be found at 670 * opencv_source_code/samples/cpp/lkdemo.cpp 671 * </li> 672 * <li> 673 * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at 674 * opencv_source_code/samples/python/lk_track.py 675 * </li> 676 * <li> 677 * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at 678 * opencv_source_code/samples/python/lk_homography.py 679 * </li> 680 * </ul> 681 */ 682 public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err, Size winSize) { 683 Mat prevPts_mat = prevPts; 684 Mat nextPts_mat = nextPts; 685 Mat status_mat = status; 686 Mat err_mat = err; 687 calcOpticalFlowPyrLK_4(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj, winSize.width, winSize.height); 688 } 689 690 /** 691 * Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with 692 * pyramids. 693 * 694 * @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid. 695 * @param nextImg second input image or pyramid of the same size and the same type as prevImg. 696 * @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be 697 * single-precision floating-point numbers. 698 * @param nextPts output vector of 2D points (with single-precision floating-point coordinates) 699 * containing the calculated new positions of input features in the second image; when 700 * OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input. 701 * @param status output status vector (of unsigned chars); each element of the vector is set to 1 if 702 * the flow for the corresponding features has been found, otherwise, it is set to 0. 703 * @param err output vector of errors; each element of the vector is set to an error for the 704 * corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't 705 * found then the error is not defined (use the status parameter to find such cases). 706 * level), if set to 1, two levels are used, and so on; if pyramids are passed to input then 707 * algorithm will use as many levels as pyramids have but no more than maxLevel. 708 * (after the specified maximum number of iterations criteria.maxCount or when the search window 709 * moves by less than criteria.epsilon. 710 * <ul> 711 * <li> 712 * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses initial estimations, stored in nextPts; if the flag is 713 * not set, then prevPts is copied to nextPts and is considered the initial estimate. 714 * </li> 715 * <li> 716 * <b>OPTFLOW_LK_GET_MIN_EIGENVALS</b> use minimum eigen values as an error measure (see 717 * minEigThreshold description); if the flag is not set, then L1 distance between patches 718 * around the original and a moved point, divided by number of pixels in a window, is used as a 719 * error measure. 720 * optical flow equations (this matrix is called a spatial gradient matrix in CITE: Bouguet00), divided 721 * by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding 722 * feature is filtered out and its flow is not processed, so it allows to remove bad points and get a 723 * performance boost. 724 * </li> 725 * </ul> 726 * 727 * The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See 728 * CITE: Bouguet00 . The function is parallelized with the TBB library. 729 * 730 * <b>Note:</b> 731 * 732 * <ul> 733 * <li> 734 * An example using the Lucas-Kanade optical flow algorithm can be found at 735 * opencv_source_code/samples/cpp/lkdemo.cpp 736 * </li> 737 * <li> 738 * (Python) An example using the Lucas-Kanade optical flow algorithm can be found at 739 * opencv_source_code/samples/python/lk_track.py 740 * </li> 741 * <li> 742 * (Python) An example using the Lucas-Kanade tracker for homography matching can be found at 743 * opencv_source_code/samples/python/lk_homography.py 744 * </li> 745 * </ul> 746 */ 747 public static void calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, MatOfPoint2f prevPts, MatOfPoint2f nextPts, MatOfByte status, MatOfFloat err) { 748 Mat prevPts_mat = prevPts; 749 Mat nextPts_mat = nextPts; 750 Mat status_mat = status; 751 Mat err_mat = err; 752 calcOpticalFlowPyrLK_5(prevImg.nativeObj, nextImg.nativeObj, prevPts_mat.nativeObj, nextPts_mat.nativeObj, status_mat.nativeObj, err_mat.nativeObj); 753 } 754 755 756 // 757 // C++: void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) 758 // 759 760 /** 761 * Computes a dense optical flow using the Gunnar Farneback's algorithm. 762 * 763 * @param prev first 8-bit single-channel input image. 764 * @param next second input image of the same size and the same type as prev. 765 * @param flow computed flow image that has the same size as prev and type CV_32FC2. 766 * @param pyr_scale parameter, specifying the image scale (<1) to build pyramids for each image; 767 * pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous 768 * one. 769 * @param levels number of pyramid layers including the initial image; levels=1 means that no extra 770 * layers are created and only the original images are used. 771 * @param winsize averaging window size; larger values increase the algorithm robustness to image 772 * noise and give more chances for fast motion detection, but yield more blurred motion field. 773 * @param iterations number of iterations the algorithm does at each pyramid level. 774 * @param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel; 775 * larger values mean that the image will be approximated with smoother surfaces, yielding more 776 * robust algorithm and more blurred motion field, typically poly_n =5 or 7. 777 * @param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a 778 * basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a 779 * good value would be poly_sigma=1.5. 780 * @param flags operation flags that can be a combination of the following: 781 * <ul> 782 * <li> 783 * <b>OPTFLOW_USE_INITIAL_FLOW</b> uses the input flow as an initial flow approximation. 784 * </li> 785 * <li> 786 * <b>OPTFLOW_FARNEBACK_GAUSSIAN</b> uses the Gaussian \(\texttt{winsize}\times\texttt{winsize}\) 787 * filter instead of a box filter of the same size for optical flow estimation; usually, this 788 * option gives z more accurate flow than with a box filter, at the cost of lower speed; 789 * normally, winsize for a Gaussian window should be set to a larger value to achieve the same 790 * level of robustness. 791 * </li> 792 * </ul> 793 * 794 * The function finds an optical flow for each prev pixel using the CITE: Farneback2003 algorithm so that 795 * 796 * \(\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\) 797 * 798 * <b>Note:</b> 799 * 800 * <ul> 801 * <li> 802 * An example using the optical flow algorithm described by Gunnar Farneback can be found at 803 * opencv_source_code/samples/cpp/fback.cpp 804 * </li> 805 * <li> 806 * (Python) An example using the optical flow algorithm described by Gunnar Farneback can be 807 * found at opencv_source_code/samples/python/opt_flow.py 808 * </li> 809 * </ul> 810 */ 811 public static void calcOpticalFlowFarneback(Mat prev, Mat next, Mat flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) { 812 calcOpticalFlowFarneback_0(prev.nativeObj, next.nativeObj, flow.nativeObj, pyr_scale, levels, winsize, iterations, poly_n, poly_sigma, flags); 813 } 814 815 816 // 817 // C++: double cv::computeECC(Mat templateImage, Mat inputImage, Mat inputMask = Mat()) 818 // 819 820 /** 821 * Computes the Enhanced Correlation Coefficient value between two images CITE: EP08 . 822 * 823 * @param templateImage single-channel template image; CV_8U or CV_32F array. 824 * @param inputImage single-channel input image to be warped to provide an image similar to 825 * templateImage, same type as templateImage. 826 * @param inputMask An optional mask to indicate valid values of inputImage. 827 * 828 * SEE: 829 * findTransformECC 830 * @return automatically generated 831 */ 832 public static double computeECC(Mat templateImage, Mat inputImage, Mat inputMask) { 833 return computeECC_0(templateImage.nativeObj, inputImage.nativeObj, inputMask.nativeObj); 834 } 835 836 /** 837 * Computes the Enhanced Correlation Coefficient value between two images CITE: EP08 . 838 * 839 * @param templateImage single-channel template image; CV_8U or CV_32F array. 840 * @param inputImage single-channel input image to be warped to provide an image similar to 841 * templateImage, same type as templateImage. 842 * 843 * SEE: 844 * findTransformECC 845 * @return automatically generated 846 */ 847 public static double computeECC(Mat templateImage, Mat inputImage) { 848 return computeECC_1(templateImage.nativeObj, inputImage.nativeObj); 849 } 850 851 852 // 853 // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize) 854 // 855 856 /** 857 * Finds the geometric transform (warp) between two images in terms of the ECC criterion CITE: EP08 . 858 * 859 * @param templateImage single-channel template image; CV_8U or CV_32F array. 860 * @param inputImage single-channel input image which should be warped with the final warpMatrix in 861 * order to provide an image similar to templateImage, same type as templateImage. 862 * @param warpMatrix floating-point \(2\times 3\) or \(3\times 3\) mapping matrix (warp). 863 * @param motionType parameter, specifying the type of motion: 864 * <ul> 865 * <li> 866 * <b>MOTION_TRANSLATION</b> sets a translational motion model; warpMatrix is \(2\times 3\) with 867 * the first \(2\times 2\) part being the unity matrix and the rest two parameters being 868 * estimated. 869 * </li> 870 * <li> 871 * <b>MOTION_EUCLIDEAN</b> sets a Euclidean (rigid) transformation as motion model; three 872 * parameters are estimated; warpMatrix is \(2\times 3\). 873 * </li> 874 * <li> 875 * <b>MOTION_AFFINE</b> sets an affine motion model (DEFAULT); six parameters are estimated; 876 * warpMatrix is \(2\times 3\). 877 * </li> 878 * <li> 879 * <b>MOTION_HOMOGRAPHY</b> sets a homography as a motion model; eight parameters are 880 * estimated;\{@code warpMatrix\} is \(3\times 3\). 881 * @param criteria parameter, specifying the termination criteria of the ECC algorithm; 882 * criteria.epsilon defines the threshold of the increment in the correlation coefficient between two 883 * iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion). 884 * Default values are shown in the declaration above. 885 * @param inputMask An optional mask to indicate valid values of inputImage. 886 * @param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5) 887 * </li> 888 * </ul> 889 * 890 * The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion 891 * (CITE: EP08), that is 892 * 893 * \(\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\) 894 * 895 * where 896 * 897 * \(\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\) 898 * 899 * (the equation holds with homogeneous coordinates for homography). It returns the final enhanced 900 * correlation coefficient, that is the correlation coefficient between the template image and the 901 * final warped input image. When a \(3\times 3\) matrix is given with motionType =0, 1 or 2, the third 902 * row is ignored. 903 * 904 * Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an 905 * area-based alignment that builds on intensity similarities. In essence, the function updates the 906 * initial transformation that roughly aligns the images. If this information is missing, the identity 907 * warp (unity matrix) is used as an initialization. Note that if images undergo strong 908 * displacements/rotations, an initial transformation that roughly aligns the images is necessary 909 * (e.g., a simple euclidean/similarity transform that allows for the images showing the same image 910 * content approximately). Use inverse warping in the second image to take an image close to the first 911 * one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV 912 * sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws 913 * an exception if algorithm does not converges. 914 * 915 * SEE: 916 * computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography 917 * @return automatically generated 918 */ 919 public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize) { 920 return findTransformECC_0(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon, inputMask.nativeObj, gaussFiltSize); 921 } 922 923 924 // 925 // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat()) 926 // 927 928 public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria, Mat inputMask) { 929 return findTransformECC_1(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon, inputMask.nativeObj); 930 } 931 932 public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType, TermCriteria criteria) { 933 return findTransformECC_2(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType, criteria.type, criteria.maxCount, criteria.epsilon); 934 } 935 936 public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix, int motionType) { 937 return findTransformECC_3(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj, motionType); 938 } 939 940 public static double findTransformECC(Mat templateImage, Mat inputImage, Mat warpMatrix) { 941 return findTransformECC_4(templateImage.nativeObj, inputImage.nativeObj, warpMatrix.nativeObj); 942 } 943 944 945 // 946 // C++: Mat cv::readOpticalFlow(String path) 947 // 948 949 /** 950 * Read a .flo file 951 * 952 * @param path Path to the file to be loaded 953 * 954 * The function readOpticalFlow loads a flow field from a file and returns it as a single matrix. 955 * Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the 956 * flow in the horizontal direction (u), second - vertical (v). 957 * @return automatically generated 958 */ 959 public static Mat readOpticalFlow(String path) { 960 return new Mat(readOpticalFlow_0(path)); 961 } 962 963 964 // 965 // C++: bool cv::writeOpticalFlow(String path, Mat flow) 966 // 967 968 /** 969 * Write a .flo to disk 970 * 971 * @param path Path to the file to be written 972 * @param flow Flow field to be stored 973 * 974 * The function stores a flow field in a file, returns true on success, false otherwise. 975 * The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds 976 * to the flow in the horizontal direction (u), second - vertical (v). 977 * @return automatically generated 978 */ 979 public static boolean writeOpticalFlow(String path, Mat flow) { 980 return writeOpticalFlow_0(path, flow.nativeObj); 981 } 982 983 984 985 986 // C++: Ptr_BackgroundSubtractorMOG2 cv::createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true) 987 private static native long createBackgroundSubtractorMOG2_0(int history, double varThreshold, boolean detectShadows); 988 private static native long createBackgroundSubtractorMOG2_1(int history, double varThreshold); 989 private static native long createBackgroundSubtractorMOG2_2(int history); 990 private static native long createBackgroundSubtractorMOG2_3(); 991 992 // C++: Ptr_BackgroundSubtractorKNN cv::createBackgroundSubtractorKNN(int history = 500, double dist2Threshold = 400.0, bool detectShadows = true) 993 private static native long createBackgroundSubtractorKNN_0(int history, double dist2Threshold, boolean detectShadows); 994 private static native long createBackgroundSubtractorKNN_1(int history, double dist2Threshold); 995 private static native long createBackgroundSubtractorKNN_2(int history); 996 private static native long createBackgroundSubtractorKNN_3(); 997 998 // C++: RotatedRect cv::CamShift(Mat probImage, Rect& window, TermCriteria criteria) 999 private static native double[] CamShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon); 1000 1001 // C++: int cv::meanShift(Mat probImage, Rect& window, TermCriteria criteria) 1002 private static native int meanShift_0(long probImage_nativeObj, int window_x, int window_y, int window_width, int window_height, double[] window_out, int criteria_type, int criteria_maxCount, double criteria_epsilon); 1003 1004 // C++: int cv::buildOpticalFlowPyramid(Mat img, vector_Mat& pyramid, Size winSize, int maxLevel, bool withDerivatives = true, int pyrBorder = BORDER_REFLECT_101, int derivBorder = BORDER_CONSTANT, bool tryReuseInputImage = true) 1005 private static native int buildOpticalFlowPyramid_0(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder, boolean tryReuseInputImage); 1006 private static native int buildOpticalFlowPyramid_1(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder, int derivBorder); 1007 private static native int buildOpticalFlowPyramid_2(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives, int pyrBorder); 1008 private static native int buildOpticalFlowPyramid_3(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, boolean withDerivatives); 1009 private static native int buildOpticalFlowPyramid_4(long img_nativeObj, long pyramid_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel); 1010 1011 // C++: void cv::calcOpticalFlowPyrLK(Mat prevImg, Mat nextImg, vector_Point2f prevPts, vector_Point2f& nextPts, vector_uchar& status, vector_float& err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4) 1012 private static native void calcOpticalFlowPyrLK_0(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags, double minEigThreshold); 1013 private static native void calcOpticalFlowPyrLK_1(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon, int flags); 1014 private static native void calcOpticalFlowPyrLK_2(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel, int criteria_type, int criteria_maxCount, double criteria_epsilon); 1015 private static native void calcOpticalFlowPyrLK_3(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height, int maxLevel); 1016 private static native void calcOpticalFlowPyrLK_4(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj, double winSize_width, double winSize_height); 1017 private static native void calcOpticalFlowPyrLK_5(long prevImg_nativeObj, long nextImg_nativeObj, long prevPts_mat_nativeObj, long nextPts_mat_nativeObj, long status_mat_nativeObj, long err_mat_nativeObj); 1018 1019 // C++: void cv::calcOpticalFlowFarneback(Mat prev, Mat next, Mat& flow, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags) 1020 private static native void calcOpticalFlowFarneback_0(long prev_nativeObj, long next_nativeObj, long flow_nativeObj, double pyr_scale, int levels, int winsize, int iterations, int poly_n, double poly_sigma, int flags); 1021 1022 // C++: double cv::computeECC(Mat templateImage, Mat inputImage, Mat inputMask = Mat()) 1023 private static native double computeECC_0(long templateImage_nativeObj, long inputImage_nativeObj, long inputMask_nativeObj); 1024 private static native double computeECC_1(long templateImage_nativeObj, long inputImage_nativeObj); 1025 1026 // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType, TermCriteria criteria, Mat inputMask, int gaussFiltSize) 1027 private static native double findTransformECC_0(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon, long inputMask_nativeObj, int gaussFiltSize); 1028 1029 // C++: double cv::findTransformECC(Mat templateImage, Mat inputImage, Mat& warpMatrix, int motionType = MOTION_AFFINE, TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001), Mat inputMask = Mat()) 1030 private static native double findTransformECC_1(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon, long inputMask_nativeObj); 1031 private static native double findTransformECC_2(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType, int criteria_type, int criteria_maxCount, double criteria_epsilon); 1032 private static native double findTransformECC_3(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj, int motionType); 1033 private static native double findTransformECC_4(long templateImage_nativeObj, long inputImage_nativeObj, long warpMatrix_nativeObj); 1034 1035 // C++: Mat cv::readOpticalFlow(String path) 1036 private static native long readOpticalFlow_0(String path); 1037 1038 // C++: bool cv::writeOpticalFlow(String path, Mat flow) 1039 private static native boolean writeOpticalFlow_0(String path, long flow_nativeObj); 1040 1041}