Package org.opencv.ml
Class ANN_MLP
java.lang.Object
org.opencv.core.Algorithm
org.opencv.ml.StatModel
org.opencv.ml.ANN_MLP
public class ANN_MLP extends StatModel
Artificial Neural Networks - Multi-Layer Perceptrons.
Unlike many other models in ML that are constructed and trained at once, in the MLP model these
steps are separated. First, a network with the specified topology is created using the non-default
constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is
trained using a set of input and output vectors. The training procedure can be repeated more than
once, that is, the weights can be adjusted based on the new training data.
Additional flags for StatModel::train are available: ANN_MLP::TrainFlags.
SEE: REF: ml_intro_ann
-
Field Summary
Fields Modifier and Type Field Description static intANNEALstatic intBACKPROPstatic intGAUSSIANstatic intIDENTITYstatic intLEAKYRELUstatic intNO_INPUT_SCALEstatic intNO_OUTPUT_SCALEstatic intRELUstatic intRPROPstatic intSIGMOID_SYMstatic intUPDATE_WEIGHTSFields inherited from class org.opencv.ml.StatModel
COMPRESSED_INPUT, PREPROCESSED_INPUT, RAW_OUTPUT, UPDATE_MODEL -
Constructor Summary
Constructors Modifier Constructor Description protectedANN_MLP(long addr) -
Method Summary
Modifier and Type Method Description static ANN_MLP__fromPtr__(long addr)static ANN_MLPcreate()Creates empty model Use StatModel::train to train the model, Algorithm::load<ANN_MLP>(filename) to load the pre-trained model.protected voidfinalize()doublegetAnnealCoolingRatio()SEE: setAnnealCoolingRatiodoublegetAnnealFinalT()SEE: setAnnealFinalTdoublegetAnnealInitialT()SEE: setAnnealInitialTintgetAnnealItePerStep()SEE: setAnnealItePerStepdoublegetBackpropMomentumScale()SEE: setBackpropMomentumScaledoublegetBackpropWeightScale()SEE: setBackpropWeightScaleMatgetLayerSizes()Integer vector specifying the number of neurons in each layer including the input and output layers.doublegetRpropDW0()SEE: setRpropDW0doublegetRpropDWMax()SEE: setRpropDWMaxdoublegetRpropDWMin()SEE: setRpropDWMindoublegetRpropDWMinus()SEE: setRpropDWMinusdoublegetRpropDWPlus()SEE: setRpropDWPlusTermCriteriagetTermCriteria()SEE: setTermCriteriaintgetTrainMethod()Returns current training methodMatgetWeights(int layerIdx)static ANN_MLPload(String filepath)Loads and creates a serialized ANN from a file Use ANN::save to serialize and store an ANN to disk.voidsetActivationFunction(int type)Initialize the activation function for each neuron.voidsetActivationFunction(int type, double param1)Initialize the activation function for each neuron.voidsetActivationFunction(int type, double param1, double param2)Initialize the activation function for each neuron.voidsetAnnealCoolingRatio(double val)getAnnealCoolingRatio SEE: getAnnealCoolingRatiovoidsetAnnealFinalT(double val)getAnnealFinalT SEE: getAnnealFinalTvoidsetAnnealInitialT(double val)getAnnealInitialT SEE: getAnnealInitialTvoidsetAnnealItePerStep(int val)getAnnealItePerStep SEE: getAnnealItePerStepvoidsetBackpropMomentumScale(double val)getBackpropMomentumScale SEE: getBackpropMomentumScalevoidsetBackpropWeightScale(double val)getBackpropWeightScale SEE: getBackpropWeightScalevoidsetLayerSizes(Mat _layer_sizes)Integer vector specifying the number of neurons in each layer including the input and output layers.voidsetRpropDW0(double val)getRpropDW0 SEE: getRpropDW0voidsetRpropDWMax(double val)getRpropDWMax SEE: getRpropDWMaxvoidsetRpropDWMin(double val)getRpropDWMin SEE: getRpropDWMinvoidsetRpropDWMinus(double val)getRpropDWMinus SEE: getRpropDWMinusvoidsetRpropDWPlus(double val)getRpropDWPlus SEE: getRpropDWPlusvoidsetTermCriteria(TermCriteria val)getTermCriteria SEE: getTermCriteriavoidsetTrainMethod(int method)Sets training method and common parameters.voidsetTrainMethod(int method, double param1)Sets training method and common parameters.voidsetTrainMethod(int method, double param1, double param2)Sets training method and common parameters.Methods inherited from class org.opencv.ml.StatModel
calcError, empty, getVarCount, isClassifier, isTrained, predict, predict, predict, train, train, trainMethods inherited from class org.opencv.core.Algorithm
clear, getDefaultName, getNativeObjAddr, save
-
Field Details
-
IDENTITY
- See Also:
- Constant Field Values
-
SIGMOID_SYM
- See Also:
- Constant Field Values
-
GAUSSIAN
- See Also:
- Constant Field Values
-
RELU
- See Also:
- Constant Field Values
-
LEAKYRELU
- See Also:
- Constant Field Values
-
UPDATE_WEIGHTS
- See Also:
- Constant Field Values
-
NO_INPUT_SCALE
- See Also:
- Constant Field Values
-
NO_OUTPUT_SCALE
- See Also:
- Constant Field Values
-
BACKPROP
- See Also:
- Constant Field Values
-
RPROP
- See Also:
- Constant Field Values
-
ANNEAL
- See Also:
- Constant Field Values
-
-
Constructor Details
-
Method Details
-
__fromPtr__
-
setTrainMethod
Sets training method and common parameters.- Parameters:
method- Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.param1- passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.param2- passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP and to finalT for ANN_MLP::ANNEAL.
-
setTrainMethod
Sets training method and common parameters.- Parameters:
method- Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.param1- passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP and to initialT for ANN_MLP::ANNEAL.
-
setTrainMethod
Sets training method and common parameters.- Parameters:
method- Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods.
-
getTrainMethod
Returns current training method- Returns:
- automatically generated
-
setActivationFunction
Initialize the activation function for each neuron. Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.- Parameters:
type- The type of activation function. See ANN_MLP::ActivationFunctions.param1- The first parameter of the activation function, \(\alpha\). Default value is 0.param2- The second parameter of the activation function, \(\beta\). Default value is 0.
-
setActivationFunction
Initialize the activation function for each neuron. Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.- Parameters:
type- The type of activation function. See ANN_MLP::ActivationFunctions.param1- The first parameter of the activation function, \(\alpha\). Default value is 0.
-
setActivationFunction
Initialize the activation function for each neuron. Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM.- Parameters:
type- The type of activation function. See ANN_MLP::ActivationFunctions.
-
setLayerSizes
Integer vector specifying the number of neurons in each layer including the input and output layers. The very first element specifies the number of elements in the input layer. The last element - number of elements in the output layer. Default value is empty Mat. SEE: getLayerSizes- Parameters:
_layer_sizes- automatically generated
-
getLayerSizes
Integer vector specifying the number of neurons in each layer including the input and output layers. The very first element specifies the number of elements in the input layer. The last element - number of elements in the output layer. SEE: setLayerSizes- Returns:
- automatically generated
-
getTermCriteria
SEE: setTermCriteria- Returns:
- automatically generated
-
setTermCriteria
getTermCriteria SEE: getTermCriteria- Parameters:
val- automatically generated
-
getBackpropWeightScale
SEE: setBackpropWeightScale- Returns:
- automatically generated
-
setBackpropWeightScale
getBackpropWeightScale SEE: getBackpropWeightScale- Parameters:
val- automatically generated
-
getBackpropMomentumScale
SEE: setBackpropMomentumScale- Returns:
- automatically generated
-
setBackpropMomentumScale
getBackpropMomentumScale SEE: getBackpropMomentumScale- Parameters:
val- automatically generated
-
getRpropDW0
SEE: setRpropDW0- Returns:
- automatically generated
-
setRpropDW0
getRpropDW0 SEE: getRpropDW0- Parameters:
val- automatically generated
-
getRpropDWPlus
SEE: setRpropDWPlus- Returns:
- automatically generated
-
setRpropDWPlus
getRpropDWPlus SEE: getRpropDWPlus- Parameters:
val- automatically generated
-
getRpropDWMinus
SEE: setRpropDWMinus- Returns:
- automatically generated
-
setRpropDWMinus
getRpropDWMinus SEE: getRpropDWMinus- Parameters:
val- automatically generated
-
getRpropDWMin
SEE: setRpropDWMin- Returns:
- automatically generated
-
setRpropDWMin
getRpropDWMin SEE: getRpropDWMin- Parameters:
val- automatically generated
-
getRpropDWMax
SEE: setRpropDWMax- Returns:
- automatically generated
-
setRpropDWMax
getRpropDWMax SEE: getRpropDWMax- Parameters:
val- automatically generated
-
getAnnealInitialT
SEE: setAnnealInitialT- Returns:
- automatically generated
-
setAnnealInitialT
getAnnealInitialT SEE: getAnnealInitialT- Parameters:
val- automatically generated
-
getAnnealFinalT
SEE: setAnnealFinalT- Returns:
- automatically generated
-
setAnnealFinalT
getAnnealFinalT SEE: getAnnealFinalT- Parameters:
val- automatically generated
-
getAnnealCoolingRatio
SEE: setAnnealCoolingRatio- Returns:
- automatically generated
-
setAnnealCoolingRatio
getAnnealCoolingRatio SEE: getAnnealCoolingRatio- Parameters:
val- automatically generated
-
getAnnealItePerStep
SEE: setAnnealItePerStep- Returns:
- automatically generated
-
setAnnealItePerStep
getAnnealItePerStep SEE: getAnnealItePerStep- Parameters:
val- automatically generated
-
getWeights
-
create
Creates empty model Use StatModel::train to train the model, Algorithm::load<ANN_MLP>(filename) to load the pre-trained model. Note that the train method has optional flags: ANN_MLP::TrainFlags.- Returns:
- automatically generated
-
load
Loads and creates a serialized ANN from a file Use ANN::save to serialize and store an ANN to disk. Load the ANN from this file again, by calling this function with the path to the file.- Parameters:
filepath- path to serialized ANN- Returns:
- automatically generated
-
finalize
-