Package org.opencv.ml
Class LogisticRegression
java.lang.Object
org.opencv.core.Algorithm
org.opencv.ml.StatModel
org.opencv.ml.LogisticRegression
public class LogisticRegression extends StatModel
Implements Logistic Regression classifier.
SEE: REF: ml_intro_lr
-
Field Summary
Fields Modifier and Type Field Description static intBATCHstatic intMINI_BATCHstatic intREG_DISABLEstatic intREG_L1static intREG_L2Fields inherited from class org.opencv.ml.StatModel
COMPRESSED_INPUT, PREPROCESSED_INPUT, RAW_OUTPUT, UPDATE_MODEL -
Constructor Summary
Constructors Modifier Constructor Description protectedLogisticRegression(long addr) -
Method Summary
Modifier and Type Method Description static LogisticRegression__fromPtr__(long addr)static LogisticRegressioncreate()Creates empty model.protected voidfinalize()Matget_learnt_thetas()This function returns the trained parameters arranged across rows.intgetIterations()SEE: setIterationsdoublegetLearningRate()SEE: setLearningRateintgetMiniBatchSize()SEE: setMiniBatchSizeintgetRegularization()SEE: setRegularizationTermCriteriagetTermCriteria()SEE: setTermCriteriaintgetTrainMethod()SEE: setTrainMethodstatic LogisticRegressionload(String filepath)Loads and creates a serialized LogisticRegression from a file Use LogisticRegression::save to serialize and store an LogisticRegression to disk.static LogisticRegressionload(String filepath, String nodeName)Loads and creates a serialized LogisticRegression from a file Use LogisticRegression::save to serialize and store an LogisticRegression to disk.floatpredict(Mat samples)Predicts responses for input samples and returns a float type.floatpredict(Mat samples, Mat results)Predicts responses for input samples and returns a float type.floatpredict(Mat samples, Mat results, int flags)Predicts responses for input samples and returns a float type.voidsetIterations(int val)getIterations SEE: getIterationsvoidsetLearningRate(double val)getLearningRate SEE: getLearningRatevoidsetMiniBatchSize(int val)getMiniBatchSize SEE: getMiniBatchSizevoidsetRegularization(int val)getRegularization SEE: getRegularizationvoidsetTermCriteria(TermCriteria val)getTermCriteria SEE: getTermCriteriavoidsetTrainMethod(int val)getTrainMethod SEE: getTrainMethodMethods inherited from class org.opencv.ml.StatModel
calcError, empty, getVarCount, isClassifier, isTrained, train, train, trainMethods inherited from class org.opencv.core.Algorithm
clear, getDefaultName, getNativeObjAddr, save
-
Field Details
-
BATCH
- See Also:
- Constant Field Values
-
MINI_BATCH
- See Also:
- Constant Field Values
-
REG_DISABLE
- See Also:
- Constant Field Values
-
REG_L1
- See Also:
- Constant Field Values
-
REG_L2
- See Also:
- Constant Field Values
-
-
Constructor Details
-
Method Details
-
__fromPtr__
-
getLearningRate
SEE: setLearningRate- Returns:
- automatically generated
-
setLearningRate
getLearningRate SEE: getLearningRate- Parameters:
val- automatically generated
-
getIterations
SEE: setIterations- Returns:
- automatically generated
-
setIterations
getIterations SEE: getIterations- Parameters:
val- automatically generated
-
getRegularization
SEE: setRegularization- Returns:
- automatically generated
-
setRegularization
getRegularization SEE: getRegularization- Parameters:
val- automatically generated
-
getTrainMethod
SEE: setTrainMethod- Returns:
- automatically generated
-
setTrainMethod
getTrainMethod SEE: getTrainMethod- Parameters:
val- automatically generated
-
getMiniBatchSize
SEE: setMiniBatchSize- Returns:
- automatically generated
-
setMiniBatchSize
getMiniBatchSize SEE: getMiniBatchSize- Parameters:
val- automatically generated
-
getTermCriteria
SEE: setTermCriteria- Returns:
- automatically generated
-
setTermCriteria
getTermCriteria SEE: getTermCriteria- Parameters:
val- automatically generated
-
predict
Predicts responses for input samples and returns a float type.- Overrides:
predictin classStatModel- Parameters:
samples- The input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F.results- Predicted labels as a column matrix of type CV_32S.flags- Not used.- Returns:
- automatically generated
-
predict
Predicts responses for input samples and returns a float type.- Overrides:
predictin classStatModel- Parameters:
samples- The input data for the prediction algorithm. Matrix [m x n], where each row contains variables (features) of one object being classified. Should have data type CV_32F.results- Predicted labels as a column matrix of type CV_32S.- Returns:
- automatically generated
-
predict
Predicts responses for input samples and returns a float type. -
get_learnt_thetas
This function returns the trained parameters arranged across rows. For a two class classification problem, it returns a row matrix. It returns learnt parameters of the Logistic Regression as a matrix of type CV_32F.- Returns:
- automatically generated
-
create
Creates empty model. Creates Logistic Regression model with parameters given.- Returns:
- automatically generated
-
load
Loads and creates a serialized LogisticRegression from a file Use LogisticRegression::save to serialize and store an LogisticRegression to disk. Load the LogisticRegression from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier- Parameters:
filepath- path to serialized LogisticRegressionnodeName- name of node containing the classifier- Returns:
- automatically generated
-
load
Loads and creates a serialized LogisticRegression from a file Use LogisticRegression::save to serialize and store an LogisticRegression to disk. Load the LogisticRegression from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier- Parameters:
filepath- path to serialized LogisticRegression- Returns:
- automatically generated
-
finalize
-