Package org.opencv.ml

Class RTrees


public class RTrees
extends DTrees
The class implements the random forest predictor. SEE: REF: ml_intro_rtrees
  • Constructor Details

  • Method Details

    • __fromPtr__

      public static RTrees __fromPtr__​(long addr)
    • getCalculateVarImportance

      public boolean getCalculateVarImportance()
      SEE: setCalculateVarImportance
      Returns:
      automatically generated
    • setCalculateVarImportance

      public void setCalculateVarImportance​(boolean val)
      getCalculateVarImportance SEE: getCalculateVarImportance
      Parameters:
      val - automatically generated
    • getActiveVarCount

      public int getActiveVarCount()
      SEE: setActiveVarCount
      Returns:
      automatically generated
    • setActiveVarCount

      public void setActiveVarCount​(int val)
      getActiveVarCount SEE: getActiveVarCount
      Parameters:
      val - automatically generated
    • getTermCriteria

      SEE: setTermCriteria
      Returns:
      automatically generated
    • setTermCriteria

      public void setTermCriteria​(TermCriteria val)
      getTermCriteria SEE: getTermCriteria
      Parameters:
      val - automatically generated
    • getVarImportance

      Returns the variable importance array. The method returns the variable importance vector, computed at the training stage when CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is returned.
      Returns:
      automatically generated
    • getVotes

      public void getVotes​(Mat samples, Mat results, int flags)
      Returns the result of each individual tree in the forest. In case the model is a regression problem, the method will return each of the trees' results for each of the sample cases. If the model is a classifier, it will return a Mat with samples + 1 rows, where the first row gives the class number and the following rows return the votes each class had for each sample.
      Parameters:
      samples - Array containing the samples for which votes will be calculated.
      results - Array where the result of the calculation will be written.
      flags - Flags for defining the type of RTrees.
    • getOOBError

      public double getOOBError()
      Returns the OOB error value, computed at the training stage when calcOOBError is set to true. If this flag was set to false, 0 is returned. The OOB error is also scaled by sample weighting.
      Returns:
      automatically generated
    • create

      public static RTrees create()
      Creates the empty model. Use StatModel::train to train the model, StatModel::train to create and train the model, Algorithm::load to load the pre-trained model.
      Returns:
      automatically generated
    • load

      public static RTrees load​(String filepath, String nodeName)
      Loads and creates a serialized RTree from a file Use RTree::save to serialize and store an RTree to disk. Load the RTree from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
      Parameters:
      filepath - path to serialized RTree
      nodeName - name of node containing the classifier
      Returns:
      automatically generated
    • load

      public static RTrees load​(String filepath)
      Loads and creates a serialized RTree from a file Use RTree::save to serialize and store an RTree to disk. Load the RTree from this file again, by calling this function with the path to the file. Optionally specify the node for the file containing the classifier
      Parameters:
      filepath - path to serialized RTree
      Returns:
      automatically generated
    • finalize

      protected void finalize() throws Throwable
      Overrides:
      finalize in class DTrees
      Throws:
      Throwable